검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        1.
        2025.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We introduce a new clustering algorithm, MulGuisin (MGS), that can identify distinct galaxy over-densities using topological information from the galaxy distribution. This algorithm was first introduced in an LHC experiment as a Jet Finder software, which looks for particles that clump together in close proximity. The algorithm preferentially considers particles with high energies and merges them only when they are closer than a certain distance to create a jet. MGS shares some similarities with the minimum spanning tree (MST) since it provides both clustering and network-based topology information. Also, similar to the density-based spatial clustering of applications with noise (DBSCAN), MGS uses the ranking or the local density of each particle to construct clustering. In this paper, we compare the performances of clustering algorithms using controlled data and some realistic simulation data as well as the SDSS observation data, and we demonstrate that our new algorithm finds networks most correctly and defines galaxy networks in a way that most closely resembles human vision.
        4,800원
        10.
        2018.10 구독 인증기관·개인회원 무료