Starting from an infrared selected GALEX-SDSS-2MASS-AKARI sample of local star forming galaxies, we built mock samples from redshift 0 to 2.5 to investigate star formation rate (SFR) calibrations using WISE luminosities. We find W3 and W4 band fluxes can indicate SFRs with small scatters when the rest-frame wavelengths are longer than ∼6μm . When the wavelength becomes shorter, the observed luminosities are more tightly connected to the emission of old stellar populations than dust, therefore lose the reliability to trace the SFR. The current SFR calibrations are consistent with previous studies.
Lyman break Galaxies are galaxies selected in the rest-frame ultraviolet. But, one important and missing information for these Lyman break galaxies is the amount of dust attenuation. This is crucial to estimate the total star formation rate of this class of objects and, ultimately, the cosmic star formation density. AKARI, Spitzer and Herschel are therefore the major facilities that could provide us with this information. As part of the Herschel Multi-tiered Extragalactic Survey, we have began investigating the rest-frame far-infrared properties of a sample of more than 4,800 Lyman Break Galaxies in the GOODS-North fiels. Most LBGs are not detected individually, but we do detect a sub-sample of 12 objects at 0.7 < z <1.6 and one object at z = 2.0. The ones detected by Herschel SPIRE have redder observed NUV-U and U-R colors than the others, while the undetected ones have colors consistent with average LBGs at z > 2.5. We have analysed their UV-to-FIR spectral energy distributions using the code cigale to estimate their physical parameters. We find that LBGs detected by SPIRE are high mass, luminous infrared galaxies. They also appear to be located in a triangle-shaped region in the AFUV vs. logLFUV diagram limited by AFUV = 0 at the bottom and by a diagonal following the temporal evolution of the most massive galaxies from the bottom-right to the top-left of the diagram. In a second step, we move to the larger COSMOS field where we have been able to detect 80 Lyman break galaxies (out of ~ 15,600) in the far infrared. They form the largest sample of Lyman break galaxies at z > 2.5 detected in the far-infrared. We tentatively name them Submillimeter Lyman break galaxies (S-LBGs).
We present the results of Spectral Energy Distribution (SED) fitting of far-infrared galaxies detected in the AKARI Deep Field-South (ADF-S) Survey and discuss their physical properties. Additionally, we perform a comparison between photometric redshifts estimated using only optical and both optical and infrared data. We conclude that our sample consists mostly of nearby galaxies rich in dust and young stars. We observe an improvement in the estimation of photometric redshifts when the IR data are included, comparing to a standard approach based mainly on the optical to UV photometry.
An overview of the North Ecliptic Pole (NEP) deep multi-wavelength survey covering from X-ray to radio wavelengths is presented. The main science objective of this multi-wavelength project is to unveil the star-formation and AGN activities obscured by dust in the violent epoch of the Universe (z=0.5-2), when the star formation and black-hole evolution activities were much stronger than the present. The NEP deep survey with AKARI/IRC consists of two survey projects: shallow wide (8.2 sq. deg, NEP-Wide) and the deep one (0.6 sq. deg, NEP-Deep). The NEP-Deep provides us with a 15 μm or 18 μm selected sample of several thousands of galaxies, the largest sample ever made at these wavelengths. A continuous filter coverage at mid-IR wavelengths (7, 9, 11, 15, 18, and 24 μ m ) is unique and vital to diagnose the contribution from starbursts and AGNs in the galaxies at the violent epoch. The recent updates of the ancillary data are also provided: optical/near-IR magnitudes (Subaru, CFHT), X-ray (Chandra), FUV/NUV (GALEX), radio (WSRT, GMRT), optical spectra (Keck/DEIMOS etc.), Subaru/FMOS, Herschel/SPIRE, and JCMT/SCUBA-2.