검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2012.09 KCI 등재 구독 인증기관·개인회원 무료
        We investigate the relation between star formation activity and PAH 3.3 μm emission. Our targets are mid-infrared-excess galaxies selected from the AKARI all-sky survey point source catalog. We performed AKARI near-infrared spectroscopy for them. As a result, we obtained 2.5 − 5 μm spectra of 79 galaxies, and selected 35 star-forming galaxies out of them. Comparing the PAH 3.3 μm luminosities with the infrared luminosities, we find a linear correlation between them. However, by adding the results from literatures for luminous infrared galaxies and ultra-luminous infrared galaxies that are more luminous than our sample, the ratio of the PAH to the infrared luminosity is found to decrease towards the luminous end.
        2.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Many observations have found evidence of the presence of a large number of heavily obscured Active Galactic Nuclei (AGNs). However, the nature of this population is only poorly understood because heavy obscuration by dust prevents one from finding them at optical wavelengths. Mid-infrared AGN searches can overcome this obstacle by penetrating through dust and by detecting direct emission from the dust torus. Thus, we can identify most of the AGN population, including type-2 and buried AGNs. Using the AKARI mid-infrared all-sky survey, we performed an AGN search in the nearby universe. Utilizing the 2MASS photometry, we selected mid-infrared-excess sources and carried out near-infrared spectroscopic observations in the AKARI Phase 3. During these follow-up observations, we have found three galaxies that show strong near-infrared red continuum from hot dust with a temperature of about 500 K, but do not show any AGN features in other wavelengths. The most suitable explanation of near-infrared continuum is the presence of central AGNs. Therefore, we conclude that they are AGNs obscured by dust. We performed X-ray observations of the two galaxies with SUZAKU. No detections in the 0.4-10 keV suggest that the column density may be much higher than NH=1023.5cm−2 . Comparing the masses of the host galaxies with those of the SDSS AGNs, we find that the host galaxies of the dusty AGNs discovered with AKARI are less massive populations than those of optically selected AGNs.
        4,000원
        3.
        2012.09 KCI 등재 구독 인증기관·개인회원 무료
        We present the properties of dust and the near-infrared spectral features in nearby early-type galaxies. The properties of dust are obtained from the AKARI far-infrared all-sky survey diffuse map. The AKARI/IRC is used for the near-infrared spectra. We improve spectral data with the new dark subtraction method on the basis of the knowledge acquired in our laboratory experiments of the engineering-model detector for the IRC. We have succeeded in fitting the continuum by a power-law function and detecting CO and SiO absorption features in early-type galaxy spectra. Comparing the properties of dust and near-infrared spectral features, we find that the power-law slope depends on dust temperature, but not on the dust mass, which suggests that low-luminosity AGNs may contribute to the changes in the power-law slope and dust temperature.
        4.
        2012.09 KCI 등재 구독 인증기관·개인회원 무료
        With AKARI, we carried out near-infrared spectroscopy of the nearby barred spiral galaxy, NGC 1097, categorized as Seyfert 1 with a circumnuclear starburst ring. Our observations mapped the galactic center region. As a result, we obtain the spatial distributions of the polycyclic aromatic hydrocarbon 3.3μm and the aliphatic hydrocarbon 3.4−3.6 μm emission. The former is detected from all the observed regions and the latter is enhanced near the bar connecting the ring with the nucleus. In addition, we detect absorption features due to H2O ice and CO/SiO at the ring and the galactic center, while we detect the hydrogen recombination line Brα only from the ring. Hence the observed spectra change dramatically within the central 1 kpc region.
        5.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The absorption features due to interstellar ices, especially H2O and CO2 ices, provide us with crucial information on present and past interstellar environments, and thus the evolutionary histories of galaxies. Before AKARI, however, few detections of ices were reported for nearby galaxies. The AKARI's unique capability of near-infrared spectroscopy with high sensitivity enables us to systematically study ices in nearby galaxies. Thus we have explored many near-infrared spectra ( 2.5−5μm ) of the 211 pointed observations, searching for the absorption features of ices. As a result, out of 122 nearby galaxies, we have significantly detected H2O ice from 36 galaxies and CO2 ice from 9 galaxies. It is notable that the ices are detected not only in late-type galaxies but also in early-type galaxies. We find that CO2 ice is more compactly distributed near the galactic center than H2O ice. Finally, we suggest that the gas density of a molecular cloud and UV radiation may be important factors to determine the abundance of ices.
        3,000원
        6.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have performed a systematic study of interstellar dust grains in various environments of galaxies. AKARI has revealed the detailed properties of dust grains not only in star-forming regions but also in regions not relevant to star formation, some of which are found not to follow our old empirical knowledge. Because of its unique capabilities, AKARI has provided new knowledge on the processing of large grains and polycyclic aromatic hydrocarbons (PAHs). For example, we detect PAHs from elliptical galaxies, which show unusual spectral features and spatial distributions, demonstrating importance of material processing in the interstellar space. We find that copious amounts of large grains and PAHs are flowing out of starburst galaxies by galactic superwinds, which are being shattered and destroyed in galactic haloes. We discover evidence for graphitization of carbonaceous grains near the center of our Galaxy, providing a clue to understanding the activity of the Galactic center. We review the results obtained from our AKARI program, focusing on the processing of carbonaceous grains in various environments of galaxies.
        4,000원
        7.
        2012.09 KCI 등재 구독 인증기관·개인회원 무료
        Among the AKARI all-sky survey data, the 9 μm diffuse map is crucial to study the polycyclic aromatic hydrocarbon (PAH) emission features on large spatial scales, while the 18 μm map is useful to trace hot dust emission. To utilize these advantages, we have improved the AKARI mid-infrared (MIR) all-sky survey diffuse maps. For example, we have established special methods to remove the effects of the ionizing radiation in the South Atlantic Anomaly (SAA) and of the scattered light from the moon. Using improved diffuse map data, we study the properties of PAHs and dust in the Galactic center region associated with high-energy phenomena.
        8.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We show how the rotation emission from isolated interstellar Polycyclic Aromatic Hydrocarbons (PAHs) can explain the so-called anomalous microwave emission (AME). AME has been discovered in the last decade as microwave interstellar emission (10 to 70 GHz) that is in excess compared to the classical emission processes: thermal dust, free-free and synchrotron. The PAHs are the interstellar planar nano-carbons responsible for the near infrared emission bands in the 3 to 15 micron range. Theoretical studies show that under the physical conditions of the interstellar medium (radiation and density) the PAHs adopt supra-thermal rotation velocities, and consequently they are responsible for emission in the microwave range. The first results from the PLANCK mission unexpectedly showed that the AME is not only emitted by specific galactic interstellar clouds, but it is present throughout the galactic plane, and is particularly strong in the cold molecular gas. The comparison of theory and observations shows that the measured emission is fully consistent with rotation emission from interstellar PAHs. We draw the main lines of our PLANCK-AKARI collaborative program which intends to progress on this question by direct comparison of the near infrared (AKARI) and microwave (PLANCK) emissions of the galactic plane.
        4,000원
        9.
        2012.09 KCI 등재 구독 인증기관·개인회원 무료
        We have carried out a survey of T Tauri stars (TTSs) in a 1,800-square-degrees region toward the Taurus-Auriga star forming region with the AKARI Mid-Infrared All-Sky Survey. By combination of AKARI, 2MASS, and UCAC surveys, we created new criteria to chose TTS candidates. We also considered Asymptotic Giant Branch stars and galaxies, which have similar infrared colors, to separate TTSs from these sources. On the basis of our criteria, we find 27 new TTS candidates. To verify our criteria, we performed follow-up observations for them and confirmed that 23 are TTSs.
        10.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The interstellar dust grains are formed and supplied to interstellar space from asymptotic giant branch (AGB) stars or supernova remnants, and become constituents of the star- and planet-formation processes that lead to the next generation of stars. Both a qualitative, and a compositional study of this cycle are essential to understanding the origin of the pre-solar grains, the missing sources of the interstellar material, and the chemical evolution of our Galaxy. The AKARI/MIR all-sky survey was performed with two mid-infrared photometric bands centered at 9 and 18 μ m . These data have advantages in detecting carbonaceous and silicate circumstellar dust of AGB stars, and the interstellar polycyclic aromatic hydrocarbons separately from large grains of amorphous silicate. By using the AKARI/MIR All-Sky point source catalogue, we surveyed C-rich and O-rich AGB stars in our Galaxy, which are the dominant suppliers of carbonaceous and silicate grains, respectively. The C-rich stars are uniformly distributed across the Galactic disk, whereas O-rich stars are concentrated toward the Galactic center, following the metallicity gradient of the interstellar medium, and are presumably affected by the environment of their birth place. We will compare the distributions of the dust suppliers with the distributions of the interstellar grains themselves by using the AKARI/MIR All-Sky diffuse maps. To enable discussions on the faint diffuse interstellar radiation, we are developing an accurate AKARI/MIR All-Sky diffuse map by correcting artifacts such as the ionising radiation effects, scattered light from the moon, and stray light from bright sources.
        4,000원