검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Abstract Activated carbon from the shell of the cashew of Para (SCP) was produced by chemical activation with ZnCl using the ratio of SCP: ZnCl2 1.0:1.5 at 700 °C. The prepared activated carbon (SCP700) was used for the removal of two emerging contaminants, 4-bromophenol (4-BrPhOH) and 4-chloroaniline (4-ClPhNH2) that are primarily employed in the industry. Different analytical techniques were used to characterize the activated carbon. From the N2 adsorption–desorption isotherms were obtained the specific surface area of 1520 m2 g− 1 and total pore volume of 0.492 cm3 g−1. The functional groups were identified by the FTIR technique and quantified by modified Boehm titration. The results revealed the bearing of several functional groups on the SCP700 surface, which may utterly influence the removal of the emerging contaminants. The equilibrium experiments showed that the maximum uptaken capacities (Qmax) achieved at 45 °C were 488.2 (4-BrPhOH) and 552.5 mg g−1 (4-ClPhNH2). The thermodynamic parameters demonstrated that the processes of 4-BrPhOH and 4-ClPhNH2 adsorption are exothermic, spontaneous, energetically suitable, and the magnitude of ΔH° is compatible with physisorption. The mechanism of the adsorption of the emerging contaminants onto the carbon surface is dominated by microporous filling, hydrogen bonds, π-stacking interactions, and other Van der Waals interactions. The use of activated carbon for the treatment of industrial synthetic wastewater with several inorganic and organic molecules commonly found in industrial effluents showed a very high percentage of uptaking (up to 98.64%).
        4,900원