Conductive polymeric composites (CPC) incorporating carbon nanotubes (CNT) and carbon fibers (CF) offer promising potential in self-heating applications due to their superior electrical and thermal properties. This study investigates the synergistic effects of CNT and CF on the electrical conductivity and heat-generation capabilities of CNT/polydimethylsiloxane (PDMS) nanocomposites. Three CF lengths (0.1 mm, 3 mm, and 6 mm) were systematically evaluated to establish hierarchical conductive networks. The incorporation of 6 mm CF into CNT/PDMS composites resulted in a 72% increase in electrical conductivity compared to composites with 0.1 mm CF. Despite these enhancements in electrical performance, the heat-generation capabilities, based on simulations and experimental validation, showed minimal dependence on CF length. A micromechanics-based numerical approach was used to compare and validate the experimental findings, identifying limitations in current analytical models, especially in predicting the heat-generation behavior.