A centrifugal cyclone dust collecting apparatus includes a hydro cyclone dust collecting apparatus for separating solid or liquid using liquid or suspension as a medium. In this study, the formation mechanism and improvement of air core and inner air layer were confirmed through Particle Image Velocimetry. These results showed that the modified experimental model was designed in the conventional method suitable for the separation of juvenile fish and eggs. The inlet speed of the multi-stage hydrocyclone dust collector, which can increase the inlet velocity and minimize floatage in the turbulence chamber, was increased from 0.15 to 0.30 m/s. As a result, the air core was stably formed, the inner air layer was increased with increasing speed. In addition, the dust collecting efficiency of egg and juvenile fish was 97.8% on average, It can infer that this system confirmed the ability to efficiently collect particles of 40 μm or more.
A ZIF-8 membrane was prepared via counter diffusion method. To control the diffusion rate, two supports with different pore structure were employed, conventional and modified α-Al2O3 disc; disc A and disc B. The ZIF-8 membranes are derived their name from the supports; ZIF-8-A and ZIF-8-B. While ZIF-8-A was grown at the surface of the disc A, ZIF-8-B was grown inside the disc B. At 200 °C, ZIF-8-A and -B exhibited H2/CO2 separation factor (SF) of 6.69 and 8.21. In long-term thermal stability tests, both ZIF-8-A and -B were withstood their properties at 200 and 250 °C for 72 h. At 300 °C, SF of ZIF-8-A fell after ~2 h, however, that of ZIF-8-B dropped after ~10 h. To sum up these features, ZIF-8-B showed higher H2 selectivity and thermal stability than ZIF-8-A, since ZIF-8 membrane was synthesized inside of the support.