검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2015.07 서비스 종료(열람 제한)
        Although the overall structure of the chloroplast genome is generally conserved, a number of sequence variations have been identified, which are valuable for plant population and evolutionary studies. Here, we constructed a chloroplast variation map of 30 landrace rice strains of Korean origin, using the Oryza rufipogon chloroplast genome (Genbank: NC_017835) as a reference. Differential distribution of single nucleotide polymorphisms (SNPs) and indels across the rice chloroplast genome is suggestive of a region-specific variation. Population structure clustering revealed the existence of two clear subgroups (indica and japonica) and an admixture group (aus). Phylogenetic analysis of the 30 landrace rice strains and six rice chloroplast references suggested and supported independent evolution of O. sativa indica and japonica. Interestingly, two “aus” type accessions, which were thought to be indica type, shared a closer relationship with the japonica type. One hypothesis is that “Korean aus” was intentionally introduced and may have obtained japonica chloroplasts during cultivation. We also calculated the nucleotide diversity of 30 accessions and compared to six rice chloroplast references, which shown a higher diversity in the indica and aus groups than in the japonica group in lower level substitution diversity.
        2.
        2015.07 서비스 종료(열람 제한)
        Rice germplasm collections continue to grow in number and size around the world. Since maintaining and screening such massive resources remain as a great challenge, it is important to establish piratical ways to manage them. A core collection, by definition, refers to a subset of entire population but preserves most of the possible genetic diversity, enhancing the efficiency for germplasm utilizations. Here we reports the whole genome resequencing of the 137 Korean rice core set (KRICE_CORE) that represents 25,604 rice germplasms deposited in Korean genebank of Rural Development Administration (RDA). We implemented the Illumna HiSeq 2000 and 2500 platform to produce short reads and then assembled those with 9.8x depth using Nipponbare as a reference. Comparisons of the sequences with the reference genome yield more than 15 million(M) single nucleotide polymorphisms (SNPs) and 1.3M insertion/deletion (INDELs). Phylogenetic and population analyses using 2,046,529 high quality SNPs successfully assigned each rice accessions to the relevant subgroups, suggesting those SNPs comprehensively capture evolutionary signatures accumulated in rice subpopulations. Furthermore, genome-wide association studies (GWAS) for 4 exemplary agronomic traits from the KRIC_CORE manifest the utility of KRICE_CORE, identifying previously defined gene or novel genetic polymorphisms that potentially regulate the important phenotypes. This study provides strong evidences that the size of KRICE_CORE is small but contains such a high genetic and functional diversity across the genome. Thus those resequencing results will be useful for future breeding, functional and evolutionary studies in the post-genomic era.