검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We report the behaviour of carbon black (CB) nanoparticles (spherical carbon shells), subjected to external pressure, using diamond anvil cell at synchrotron facility. CB nanoparticles have been synthesized by lamp black method using olive oil as combustion precursor and ferrocene as an organometallic additive. The catalyst-assisted CB has an iron oxide (γ-Fe2O3) core and amorphous carbon shell (i.e. core–shell structure). Our present study suggests that the carbon shells are partially transparent to the applied high pressure, and result in the reduction of effective pressure that gets transferred to the iron oxide core. High-pressure Raman spectroscopy results indicate that the surrounding carbon shells get compressed with pressure and this change is reversible. However, no structural transformation was observed till the highest applied pressure (25 GPa). The Raman spectroscopy results also suggests that the carbon shells are less pressure sensitive as their pressure coefficients (dω/dP) of G-peak were calculated (3.79 cm− 1/GPa) to be less than that for other carbon allotropes.
        4,000원
        2.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Individual multi-walled carbon nanotubes (MWCNTs) were exposed to the electron beam of 200 kV energy and high resolution transmission electron micrographs were recorded at several time intervals. Interestingly, the nucleation of diamond nanoparticles with in the highly disordered MWCNT matrix upon electron-irradiation is observed. This happens without any assistance of high pressures and temperatures. High pressure X-ray diffraction experiments were performed on core/shell structures which suggest that even the closed structures of carbon resist any inward pressure, thereby ruling out the possibility of a hypothetical internal pressure under the electron irradiation conditions. Our experiments suggest that the transformation of graphitic carbon into diamond in the size window of a few nanometers is possible due to the stability of the diamond and a selective dissolution effect of 200 kV electrons on graphite. A mechanism for the same is proposed.
        4,300원