How does the presence of an AGN in uence the total SFR estimates of galaxies and change their distribution with respect to the Galaxy Main Sequence? To contribute to solving this question, we study a sample of 1133 sources detected in the North Ecliptic Pole field (NEP) by AKARI and Herschel. We create a multi-wavelength dataset for these galaxies and we fit their multi-wavelength Spectral Energy Distribution (SED) using the whole spectral regime (from 0.1 to 500 μm). We perform the fit using three procedures: LePhare and two optimised codes for identifying AGN tracers from the SED analysis. In this work we present an overview of the comparison between the estimates of the Infrared bolometric luminosi- ties (between 8 and 1000 μm) and the AGN fractions obtained exploiting these dierent procedures. In particular, by estimating the AGN contribution in four different wavelength ranges (5-40 μm, 10-20 μm, 20-40 μm and 8-1000 μm) we show how the presence of an AGN affects the PAH emission by suppressing the ratio L8 μm L4:5 μm as a function of the considered wavelength range.
An overview of the North Ecliptic Pole (NEP) deep multi-wavelength survey covering from X-ray to radio wavelengths is presented. The main science objective of this multi-wavelength project is to unveil the star-formation and AGN activities obscured by dust in the violent epoch of the Universe (z=0.5-2), when the star formation and black-hole evolution activities were much stronger than the present. The NEP deep survey with AKARI/IRC consists of two survey projects: shallow wide (8.2 sq. deg, NEP-Wide) and the deep one (0.6 sq. deg, NEP-Deep). The NEP-Deep provides us with a 15 μm or 18 μm selected sample of several thousands of galaxies, the largest sample ever made at these wavelengths. A continuous filter coverage at mid-IR wavelengths (7, 9, 11, 15, 18, and 24 μ m ) is unique and vital to diagnose the contribution from starbursts and AGNs in the galaxies at the violent epoch. The recent updates of the ancillary data are also provided: optical/near-IR magnitudes (Subaru, CFHT), X-ray (Chandra), FUV/NUV (GALEX), radio (WSRT, GMRT), optical spectra (Keck/DEIMOS etc.), Subaru/FMOS, Herschel/SPIRE, and JCMT/SCUBA-2.