검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        2.
        2022.10 구독 인증기관·개인회원 무료
        The detector response was simulated to design a fork detection system for verifying the characteristics of spent fuel. The fork detection system currently used consists of two fission chamber and an ion chamber, and it is nuclear safeguard equipment that measures the gross neutrons and gross gamma rays emitted from the spent fuel assembly to identify the characteristics of the spent fuel and verify the authenticity of the operation history. In order to improve the current fork detection system, we are developing a system that applies CZT, a room temperature semiconductor detector, and a stilbene detector, which is an organic scintillator. Depletion calculations were performed using the ORIGEN code to determine the radiological characteristics emitted from spent nuclear fuel assembly. The flux of radiation emitted from the spent nuclear fuel assembly was calculated by changing the conditions such as initial enrichment, burnup, and cooling time, which are major variables of spent fuel assembly. The calculated result is used as the source term of the particle transport code. Considering the general operating conditions of the pressurized light water reactor, the conditions were changed in the range of 3-5% for initial enrichment and 30-72 GWD/MTU for burnup, and the cooling time was given within 10 years. MCNP 6.2, a Monte Carlo simulation code, was used to simulate the detector response to radiation emitted from spent nuclear fuel assembly. According to the shape, size, and position of the CZT detector, the gamma counts incident on the detector were calculated and derived the initial design of our fork detection system.