The COVID-19 pandemic has caused significant disruptions in global air travel demand, presenting new challenges for accurately forecasting passenger volumes. This study analyzes the monthly air passenger demand data from 2010 to 2022 to identify key external factors that influence passenger demand. Our analysis shows that the number of international visitors to Singapore is a critical determinant of passenger demand. Consequently, we propose a SARIMAX (Seasonal AutoRegressive Integrated Moving Average with eXogenous variables) model to forecast monthly air passenger demand at Singapore's Changi Airport, integrating international visitor numbers as an exogenous variable. Through comprehensive model identification and parameter estimation, we select the best SARIMAX configuration. To validate the performance of the model, traditional time series methods such as SARIMA, various exponential smoothing methods, and advanced machine learning methods like LSTM (Long Short-Term Memory) and Prophet were compared for forecasting monthly air passenger demand at Changi Airport in 2023. The results show that the SARIMAX model significantly outperforms all other tested models, achieving the best performance across multiple forecasting metrics, including the Mean Absolute Percentage Error.
In this study, we consider the problem of forecasting the number of inbound foreigners visiting Korea. Forecasting tourism demand is an essential decision to plan related facilities and staffs, thus many studies have been carried out, mainly focusing on the number of inbound or outbound tourists. In order to forecast tourism demand, we use a seasonal ARIMA (SARIMA) model, as well as a SARIMAX model which additionally comprises an exogenous variable affecting the dependent variable, i.e., tourism demand. For constructing the forecasting model, we use a search procedure that can be used to determine the values of the orders of the SARIMA and SARIMAX. For the exogenous variable, we introduce factors that could cause the tourism demand reduction, such as the 9/11 attack, the SARS and MERS epidemic, and the deployment of THAAD. In this study, we propose a procedure, called Measuring Impact on Demand (MID), where the impact of each factor on tourism demand is measured and the value of the exogenous variable corresponding to the factor is determined based on the measurement. To show the performance of the proposed forecasting method, an empirical analysis was conducted where the monthly number of foreign visitors in 2019 were forecasted. It was shown that the proposed method can find more accurate forecasts than other benchmarks in terms of the mean absolute percentage error (MAPE).
In this study, we consider the assembly line balancing (ALB) problem which is known as an very important decision dealing with the optimal design of assembly lines. We consider ALB problems with soft constraints which are expected to be fulfilled, however they are not necessarily to be satisfied always and they are difficult to be presented in exact quantitative forms. In previous studies, most researches have dealt with hard constraints which should be satisfied at all time in ALB problems. In this study, we modify the mixed integer programming model of the problem introduced in the existing study where the problem was first considered. Based on the modified model, we propose a new algorithm using the genetic algorithm (GA). In the algorithm, new features like, a mixed initial population selection method composed of the random selection method and the elite solutions of the simple ALB problem, a fitness evaluation method based on achievement ratio are applied. In addition, we select the genetic operators and parameters which are appropriate for the soft assignment constraints through the preliminary tests. From the results of the computational experiments, it is shown that the proposed algorithm generated the solutions with the high achievement ratio of the soft constraints.
In this paper, we consider a line balancing problem in hybrid flowshops where each workstation has identical parallel machines. The number of machines in each workstation is determined in ways of satisfying pre-specified throughput rate of the system. T