Frequency-adaptive Lumped Mass Stick (LMS) method has been proposed recently to present the dynamic responses of a structure by a stick model which has identical frequencies to the original structure. The masses of the LMS model are obtained by an iterative method following a sequence of equations, where the masses always converge to certain values. Those values are solutions of a nonlinear equations system as will be shown in this study. This paper also investigates the significance of masses locations on the dynamic responses of the LMS models.
In this paper, the peak impact factor response spectrum is verified through finite element (FE) analysis using a simply supported bridge. The FE model is a slab bridge designed with 4 m width and 8 m length. The FE analysis is applied on the bridge modeled with 2D frame and 3D solid. By considering 5% damping ratio, the peak impact factors of the FE models and the response spectrum are compared. From the results, a very small difference of about 1.5% is found between the FE models and the response spectrum.