In vitro culture of murine embryos is an important step for in vitro production systems including in vitro fertilization and generations of genetically engineered mice. M16 is widely used commercialized culture media for the murine embryos. Compared to other media such as potassium simplex optimization medium, commercial M16 (Sigma) media lacks of amino acid, glutamine and antibiotics. In the present study, we optimized M16 based embryo culture system using commercialized antibiotics-glutamine or amino acids supplements. In vivo derived murine zygote were M16 media were supplemented with commercial Penicillin-Streptomycin-Glutamine solution (PSG; Gibco) or MEM Non- Essential Amino Acids solution (NEAA; Gibco) as experimental design. Addition of PSG did not improved cleavage and blastocyst rates. On the other hand, cleavage rate is not different between control and NEAA treated group, however, blastocyst formation is significantly (P<0.05) improved in NEAA treated group. Developmental competence between PSG and NEAA treated groups were also compared. Between two groups, cleavage rate was similar. However, blastocyst formation rate is significantly improved in NEAA treated group. Taken together, beneficial effect of NEAA on murine embryos development was confirmed. Effect of antibiotics and glutamine addition to M16 media is still not clear in the study.
KO mice provide an excellent tool to determine roles of specific genes in biomedical filed. Traditionally, knockout mice were generated by homologous recombination in embryonic stem cells. Recently, engineered nucleases, such as zinc finger nuclease, transcription activator-like effector nuclease and clustered regularly interspaced short palindromic repeats (CRISPR), were used to produce knockout mice. This new technology is useful because of high efficiency and ability to generate biallelic mutation in founder mice. Until now, most of knockout mice produced using engineered nucleases were C57BL/6 strain. In the present study we used CRISPR-Cas9 system to generate knockout mice in FVB strain. We designed and synthesized single guide RNA (sgRNA) of CRISPR system for targeting gene, Abtb2. Mouse zygote were obtained from superovulated FVB female mice at 8-10 weeks of age. The sgRNA was injected into pronuclear of the mouse zygote with recombinant Cas9 protein. The microinjected zygotes were cultured for an additional day and only cleaved embryos were selected. The selected embryos were surgically transferred to oviduct of surrogate mother and offsprings were obtained. Genomic DNA were isolated from the offsprings and the target sequence was amplified using PCR. In T7E1 assay, 46.7% among the offsprings were founded as mutants. The PCR products were purified and sequences were analyzed. Most of the mutations were founded as deletion of few sequences at the target site, however, not identical among the each offspring. In conclusion, we found that CRISPR system is very efficient to generate knockout mice in FVB strain.