다변량 빈도해석과 지역빈도해석의 장점을 동시에 가지는 다변량 지역빈도해석은 다양한 변수를 고려함으로써 수문 현상에 대하여 많은 정보를 얻을 수 있고 많은 가용 자료 수로 인하여 높은 정확도의 분석결과를 도출할 수 있다. 현재까지는 우리나라의 강우 자료를 이용하여 다변량 지역빈도해석이 시도된 적이 없어 국내의 강우 자료를 대상으로 다변량 지역빈도해석의 적용성을 검토할 필요가 있다. 본 연구에서는 다변량 지역빈도해석의 매개변수 추정, 최적 분포형 선정, 확률수문량 성장곡선 추정 등에 집중하여 이변량 수문자료인 연 최대 강우량-지속기간 자료에 대하여 이변 량 지역빈도해석의 적용성을 평가하였다. 기상청 71개 지점에 대하여 분석을 실시하였다. 본 연구를 통해 적용된 지역강우자료의 최적 copula 모형으로는 Frank와 Gumbel copula 모형이 선택되었고 주변분포형에 대해서는 지역별로 Gumbel과 대수정규분포와 같은 다양한 분포형이 최적 분포형으로 선택되었다. 상대제곱근오차(relative root mean square error)를 기준으로 지역빈도해석이 지점빈도해석보다 안정적이고 정확한 확률수문량 곡선 추정을 하였다. 이변량 강우분석에서 지역빈도해석을 적용하면 안정적인 수공구조물 설계기준 제시와 강우-지속기간 관계를 모형화 할 수 있을 것으로 기대된다.
본 연구에서는 미계측 도시유역의 수공구조물 설계기준의 불확실성을 검토하기 위해 과거관측자료(S0)를 기준으로 상세화 기법(downscaling) 및 편의보정(bias correlation)을 통해 생산된 RCP 4.5 기후시나리오 HadGEM3-RA (RCM)모델을 이용하여 S1 (2017~2046년), S2 (2047~2076년), S3 (2077~2100년) 기간의 확률강우량의 변화를 평가하고, 도시유출모형을 이용하여 최대첨두홍수량을 산정하고 기후변화 기간별 영향을 분석하였다. 이때 확률분포형은 Gumbel, 매개변수 추정은 최우도법(ML)을 사용하였다. 평가 결과 대부분의 도시배수시설물 설계빈도인 10년 빈도의 경우 3사분위값을 기준으로 50년 미래를 가정할 경우에는 약 10%, 70년 이상의 미래를 가정할 경우에는 약 20%의 확률 홍수량 증가가 예상되었다. 이러한 결과는 현재를 기준으로 설정된 설계홍수량으로 설치된 도시배수시설물이 미래에는 설계기준에 미달하는 시설물이 될 수 있다는 것을 의미하며, 기후변화에 대응 위해서 설계기준에 시설물의 내구연한을 고려한 미래 기후상태를 반영해야할 것으로 판단된다.
지역빈도해석은 대상 지점과 수문학적 동질성을 만족하는 주변 지점을 하나의 지역으로 보고 빈도해석을 수행하는 방법이다. 따라서 동질한 지역의 구분은 지역빈도해석에 있어서 가장 중요한 가정이라고 할 수 있다. 이에 본 연구에서는 인공신경망 기법중 하나인 자기조직화지도(self-organizing map, SOM) 기법을 활용하여 강우 지역빈도해석을 위한 동질 강수 지역을 구분하였다. 지역구분 인자로는 지형 정보와 시 단위 강우자료를 활용하였다. 최적 SOM 지도 구성을 위해 정량적 오차와 위상관계 오차를 활용하였다. 그 결과 7 × 6 배열의 42개의 노드를 갖는 모형을 선정하였고 최종적으로 강우 지역빈도해석을 위해 6개의 군집으로 구분하였다. 동질성 검토 결과 6개의 군집 모두 동질한 지역으로 나타났으며 기존의 유사하게 구분된 지역들과 이질성 척도를 비교하였을 때 좀 더 안정적인 지역 구분결과를 나타내는 것을 확인하였다.
본 연구의 목적은 월강우량을 이용하여 강우침식인자를 추정하는 기존의 방법인, Fournier 지수, modified Fournier 지수, IAS (Institute of Agricultural Sciences) 지수 등의 적용성을 확인하고 더 합리적인 월강우량 기반의 강우침식인자 추정모델을 제시하기 위한 것이다. 본 연구에서는 월강우량 기반의 수정 IAS 지수를 새롭게 제안하였다. 이것은 연중가장 비가 많이 내린 두 달의 강우량의 합으로써 강우침식인자
입력자료의 불확실성은 강우-유출 모의에서 중요한 불확실성 요소 중의 하나이다. 본 연구에서는 먼저 세 가지의 서로 다른 내삽 기법을 통해 계산된 강수 입력 자료 (관측값을 각 소유역의 중심점으로 내삽하여 추정한 입력자료임)들이 강우-유출 모형에 미치는 영향을 분포형 수문모형 (PRMS)을 이용하여 분석하였으며, 내삽오차를 바탕으로 발생한 입력자료를 앙상블 유량 예측에 이용하는 과정을 수문학적으로 서로 다른 두개 하천 유역에 적용하였다. 또한 Monte
직접적인 매개변수 추정방법의 다양한 Neyman-Scott 구형펄스모형(NSRPM) 기반 모형에 대한 적용성 검토와 정규분포를 이용한 새로운 NSRPM(NMNSRPM)의 개발 연구를 수행하였다. 기상청 서울 유인관측소에서 제공하는 49년의 관측 강수자료를 사용하여 매개변수를 추정하였으며, 추정된 매개변수들의 정확도를 판단하고자 생성된 강수자료의 통계값, 유강수일 비율, 강수분포를 비교하였다. 통계값을 비교해본 결과 NSRPM과 수정 NSRPM(MNSRP
연최대수문량의 도시적 분석에 주로 이용되어 온 확률도시위치는 표본자료와 적정 확률분포형의 적합도를 표시하여 초과확률을 산정할 수 있도록 하며, 일부 적합도 검정에도 사용되기도 한다. 확률도시위치를 결정하는 도시위치공식은 오래 전부터 꾸준히 연구되어 왔는데, 특히 빈도해석에 널리 사용되는 GEV 분포에 대한 연구는 다른 분포형보다 더욱 활발히 이루어져 왔다. 본 연구에서는 GEV 분포에 적합한 도시위치공식을 추정하고자 GEV 분포의 순서통계량의 평균 개념
분포형 수문 모형의 일강우 입력 자료는 불가피하게 불규칙하고 밀도가 낮은 관측망에서 기록된 값을 내삽해 사용하게 되나, 흔히 사용되는 대부분의 내삽법들은 실제 일강우의 다양한 공간적 분포를 잘 재현하지 못하는 문제가 있다. 본 연구에서는 널리 사용되는 다섯 가지의 강우 내삽 방법을 두개의 유역에 사용하여 비교하고 실제 공간적 분포를 보다 잘 나타낼 수 있는 2단계 내삽법을 제안하였다. 비교에 사용된 내삽법은 (1) 역가중치 방법(IDW), (2) 다중회
빈도해석에 있어서 중요한 문제는 특정 재현기간에 대한 수문량의 크기를 산정하는 것으로, 빈도해석에서는 일반적으로 관측기간보다 긴 재현기간에 해당하는 수문량의 크기를 산정하기 위해 가정된 확률분포형을 표본 자료에 적합시키게 된다. 따라서 적절한 확률분포형의 선정이 무엇보다 중요하며 이는 일반적으로 대상 자료로부터 얻어지는 경험적 빈도분포와 가정한 확률분포의 일치 정도를 판단하는 적합도 검정 방법을 이용하게 된다. 일반적으로 많이 사용되는 적합도검정 방법들
본 연구에서는 레이더 강우량 자료의 편차보정에 사용되는 G/R비의 정확도를 향상시키기 위하여 fuzzy c-means 방법을 사용한 자료의 군집화를 적용하였다. 대상 레이더자료는 광덕산 레이더기지의 자료로서 유효범위 100km이내의 자료를 대상으로 지상관측망인 기상청의 AWS(Automatic Weather System) 지점에서 관측한 자료와의 비교를 통하여 G/R비를 구하였다. G/R비를 구하는데 있어서 전체 유효범위를 대상으로 동일한 방법을 사용한
본 연구에서는 다중회귀분석을 이용하여 산악효과를 야기하는 지형인자와 강수와의 관계를 파악하였다. 섬 전체가 산악지형인 제주도의 연평균강수량과 지수홍수법으로 산출한 확률강우량을 강수자료로 사용하여 산악효과를 야기하는 지형인자로 선정한 고도, 위 경도와 회귀모형을 구성하였다. 회귀분석 결과 연평균강수량과 고도와의 선형관계가 확률강우량에서도 동일하게 나타났으며, 고도이외에 위도, 경도를 각각 추가인자로 고려할 경우 강우량과 더욱 강한 상관성을 보였다. 또한,
본 연구에서는 generalized logistic(GL) 분포의 최우도 추정량(maximum likelihood estimate)에 대한 불확실성 추정을 위하여 사용되는 관측정보행렬(observed information matrix)과 Fisher 정보행렬(Fisher information matrix)의 정확도를 비교해 보고자 하였다. 타 분포형에 대한 기존의 연구결과에서 표본의 크기가 클 경우 매개변수 추정시 관측정보행렬이 동시에 추정되어 계산시간
본 연구에서는 지점 간 확률가중모멘트의 교차상관관계를 구하기 위해 Monte Carlo 모의를 이용하여 이를 지점간 표본자료의 교차상관성에 대한 관계식으로 확장하여 근사값을 구하고자 하였다. 모의실험 결과 각각의 확률가중 모멘트간 교차상관계수는 지점 간 표본자료의 교차상관계수와 자료크기가 동일하고 동시간 자료일 경우 기울기 1인 선형관계를 보이며, 자료크기에 따른 동시간 자료의 비율이 작아질수록 선형적인 관계는 점점 약해지게 된다. 따라서 자료크기에 따
GPD 모형은 수문학 극치확률량 해석에 주로 적용되어 왔다. 극치 통계의 주목적은 드문 사상의 예측이며, 주요 문제점으로는 임계값 또는 임계값 초과치들에 대한 정확한 산정방법이 없어 그 추정이 매우 어렵다는 것이다. 본 연구에서는 임계값 또는 임계값 초과치들을 산정하기 위하여 4가지 방법을 적용하였다. 그 비교를 위하여 GPD 모형에 적용하여 7개의 지속시간(1, 2, 3, 6, 12, 18 및 24시간)과 10개의 재현기간(2, 3, 5, 10, 20
지역빈도해석을 통한 확률강우량 산정 결과는 수문학적으로 동질한 지역의 구분 결과에 따라 달라진다. 지역을 구분할 때에는 강우에 영향을 미치는 다양한 변수들이 사용될 수 있다. 변수의 유형과 개수가 지역 구분의 효율성을 좌우하기 때문에 활용 가능한 모든 변수들의 정보를 요약할 수 있는 변수들을 선택하는 것이 지역 구분의 효율성 면에서 유리하다고 할 수 있다. 이런 면에서 지역 구분의 효율성을 증대시킬 목적으로 다변량 분석 기법이 활용될 수 있다. 본 연구
본 연구에서는 지역빈도해석 기법 중 하나인 FORGEX 기법을 이용하여 확률강우량을 추정하였다. 기존의 원형 네트워크와 1:1.5, 1:2의 비율을 갖는 타원형 네트워크가 한국의 강우자료에 적합한 방법인지를 판단하기 위해 3 가지 경우를 비교 분석하였다. 이 분석을 위해서 남한지역의 376개 지점의 연최대강우자료를 추출하고, 이 자료들을 연최대자료의 중간값으로 표준화하였다. 네트워크는 분석 대상 지점을 중심으로 형성되며, pooled points와 ne
수공구조물의 위험도에 관한 불확실성을 검토하기 위하여 본 연구에서는 빈도해석을 통하여 추정되는 설계홍수량의 분산량을 고려한 불확실성 해석을 실시하였다. Gumbel 분포형을 기본 분포형으로 가정하였으며, 모멘트법, 최우도법, 확률가중모멘트법을 이용하여 각 매개변수 추정방법별로 추정된 설계홍수량에 대한 이론적인 분산량을 산정하였다. 이론적으로 유도한 분산량의 특성을 규명하기 위하며 다양한 표본크기와 설계연한, 비초과확률 및 변동계수조건에 대하여 Monte
기상예보모형 중 장기예측에 널리 사용되는 CGM모의결과를 이용하여 확률론적 불확실성 해석기법의 적용을 통해 유역단위로 관리되는 국내 수자원 운영에 대한 활용 가능성을 분석하였다. 연구된 기법은 GCM 모의값이 관측값의 크고 작음을 얼마나 잘 구분하는지를 확률적으로 분석하는 방법으로 Kolmogorov-Smirnov 검정을 사용한다. GCM 모의값으로는 ECMWF에서 AMIP-II 형태로 모의한 결과로부터 표면강수량을 추출하여 사용하였으며, 관측값은 국내
하천유지유량 설정에 최소한의 기준이 되는 갈수량을 결정하기 위하여 하천유량 자료를 검토하고 확률갈수량을 추정하였다. 확률갈수량은 모수적 방법과 비모수적 방법을 사용하여 산정하였으며, Monte Carlo 모의실험을 통하여 비교·분석하였다. 한강유역 13개 지점의 갈수량에 대한 빈도 해석을 실시한 결과, 유역 전체에 대한 확률분포 형은 3가지 분포형, 즉 2모수 gamma, 2모수 lognormal, 그리고 2모수 Weibull 분포가 한강 전지점의 주요
본 연구에서는 한강유역의 1일, 2일, 3일 연최대강우자료를 대상으로 L-모멘트법을 이용한 지점 빈도해석과 지역 빈도해석을 실시하여 그 결과를 비교하였다. 지역빈도해석을 실시하기 위하여 한강유역을 남한강, 북한강, 한강하류부 유역의 3개 소유역으로 분할하고, 각 유역에 대한 자료의 이산도 및 동질성을 검토하였으며, 각 소유역에 대하여 여러 분포형을 적용한 결과, 남한강유역과 한강하류부 유역은 lognormal 분포형, 북한강 유역은 gamma-3 분포형