The purpose of this study was to assess the efficacy of photodynamic therapy (PDT) using erythrosine and a halogen light source to treat a biofilm formed on a machined surface titanium disk in vivo. Ten volunteers carried an acrylic appliance containing six machined surface titanium disks on the upper jaw over a period of five days. After the five days of biofilm formation period, the disks were removed. PDT using 20 μM erythrosine and halogen light was then applied to the biofilms formed on the disks. Experimental samples were divided into a negative control group (no erythrosine and no irradiation), E0 group (erythrosine 60s + no irradiation), E30 group (erythrosine 60s + halogen light 30s), and E60 group (erythrosine 60s + halogen light 60s). Following PDT, the bacteria in the biofilm were found to be detached from each disk. Each suspension with detached bacteria were diluted and cultivated on a blood-agar plate for five days under anaerobic conditions. The cultivated bacterial counts in the E60 group were significantly lower than the control group (86.4%) or E0 group (76.7%). In the experimental groups also, the light exposure time and bacterial counts showed a negative correlation. In conclusion, PDT using erythrosine and halogen light has bactericidal effects on biofilms formed on a titanium disk in vivo. Notably, applying 20 μM erythrosine and 60 seconds of halogen light irradiation had a significantly potent effect.