It has been established that berberine has strong antimicrobial effects. Little is known however regarding the antimicrobial activity of berberine against endodontic pathogenic bacteria or its cytotoxicity in human oral tissue cells. The antibacterial properties of berberine were tested against 5 strains of Enterococcus faecalis and type strains of Aggregatibacter actinomycetemcomitans, Prevotella nigrescens, Prevotella intermedia, and Tannerella forsythia, which are involved in endodontic infections. Antimicrobial activity was evaluated through minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) measurements. The viability of normal human gingival fibroblast (NHGF) cells after exposure to berberine was measured using a methyl thiazolyl tetrazolium (MTT) assay. The data showed that berberine has antimicrobial effects against A. actinomycetemcomitans with an MIC and MBC of 12.5 μg/ml and 25 μg/ml, respectively. In the cytotoxicity studies, cell viability was maintained at 66.1% following exposure to 31.3 μg/ml berberine. Overall, these findings suggest that berberine has antimicrobial activity against the tested bacteria. Nevertheless, lower concentrations in combination with other reagents will need to be tested before these in vitro results can be translated to clinical use.
The DNA probes Pn17 and Pn34 were evaluated for their ability to specifically detect clinical strains of P. intermedia and P. nigrescens from a Korean population by dot blot hybridization. These probes were sequenced by extension termination and their specificity was determined by Southern blot analysis. The results revealed that the Pn17 sequence (2,517 bp) partially encodes an RNA polymerase beta subunit (rpoB) and that Pn34 (1,918 bp) partially encodes both rpoB (1-169 nts) and the RNA polymerase beta subunit (rpoB'; 695-1918 nts). These probes hybridized with both HindIII- and PstI-digested genomic DNAs from the strains of P. intermedia and P. nigrescens used in this study. Interestingly, each of the hybrid bands generated from the HindIII-digested genomic DNAs of the two bacterial species could be used to distinguish between them via restriction fragment length polymorphism. These results thus indicate that Pn17 and Pn34 can simultaneously detect P. intermedia and P. nigrescens.
This study was undertaken to develop PCR primers for the identification and detection of Streptococcus anginosus using species-specific forward and reverse primers. These primers targeted the variable regions of the 16S ribosomal RNA coding gene(rDNA). The primer specificity was tested against 12 S. anginosus strains and 6 different species(10 strains) of oral bacteria. The primer sensitivity was determined by testing serial dilutions of the purified genomic DNA of S. anginosus ATCC 33397T. The data showed that species-specific amplicons were obtained from all the S. anginosus strains tested, but not in the six other species. The PCR could detect as little as 0.4pg of the chromosomal DNA from S. anginosus. This suggests that the PCR primers are highly sensitive and applicable to the detection and identification of S. anginosus.