원전 일차계통 HyBRID 제염공정에서 발생되는 제염폐액에는 황산이온과 방사성 핵종을 포함한 금속이온 및 발암성 물질의 하이드라진을 포함하고 있어 이를 안전한 수준으로 처리할 수 있는 기술개발이 필요하다. 본 연구에서는 모의 제염폐액 내 황산 및 금속이온의 제거와 하이드라진의 분해시험을 실시하여 황산이온, 금속이온 및 하이드라진을 효과적으로 제거할 수 있는 HyBRID 제염폐액 처리공정을 도출하였으며, 1 L 규모에서의 반복실험과 Pilot 규모(300 L/batch)에서의 평가시험을 통해 도출한 HyBRID 제염폐액 처리공정의 성능 재현성과 적용성을 검증하였다.
레이저 용발법에 의한 금속 표면 제염특성을 평가하였다. 레이저로는 파장 532 nm, 펄스에너지 150 mJ, 펄스폭 5 ns의 큐스위치 Nd:YAG 를 적용하였고, 금속 표면에 CsNO3, Co(NH4)2(SO4)2, Eu2O3 그리고 CeO2를 오염시켜 이들의 제염 특성을 평가하였다. 제염 변수로는 레이저 적용횟수, 레이저 에너지 밀도 및 레이저 조사 각도 특성을 평가하였으며 각각 8, 13.3 J/cm2 및 30o의 최적 조건을 확인하였다. 제염 효율은 오염성분의 비점과 관련이 있었으며 CsNO3>Co(NH4)2(SO4)2>Eu2O3>CeO2 순이었다. 또한 여러 에너지 밀도 조건에서 스테인레스 스틸 재질의 식각 깊이 제어 특성을 규명하였다.
원자력연구소 핫셀의 구조와 오염특성이 조사되었다. SEM 측정결과 핫셀 내부에 부착된 고방사능 분진의 크기는 이었다. 사이클론의 최적 Vortex finder의 길이는 49 mm이고, 모의입자 유입속도는 15m/sec가 적합했다. 이때 의 포집효율은 약 85%였다. 모의 입자 유입속도가 15m/sec보다 빠를 때, 포집효율의 증가율은 크지 않았다. 유입가스의 온도가 증가할 때, 포집효율은 약간 감소했다. Vortex finder의 길이가 증가할수록 사이클론내의 압력강하는 커졌다. Cut size diameter는 Reynolds number의 증가와 함께 감소했다. 측정된 Reynolds number에 근거하면, 사이클론 내부는 난류이고 이 난류는 사이클론 내의 압력강하에 원인이 된다고 사료된다. 는 Re 값의 증가와 함께 감소하고, Re의 값이 커질 때에서 일정한 값에 수렴했다. 즉, 6000-8000의 Re에서 는 약 0.045를 나타냈다.
PFC 제염기술은 원자력연구시설 핫셀 내부의 바닥이나 장치표면에 부착된 고방사능분진을 제거하기 위한 방법 중의 하나이다. 고가의 PFC 제염용액을 회수 정제후 재사용하고, 2차폐기물발생을 획기적으로 줄일 수 있는 여과장치를 개발하였다. PFC 매질 내 현탁성 방사성입자를 제거하기 위해 오염특성에 적합한 여과장치를 개발하고 입자제거 성능평가시험을 수행하였다. 개발된 PFC 여과장치는 핫셀 내부로 들어갈 수 있게 알맞은 크기와 무게로 제작되었으며 바퀴와 고리를 부착하여 이동이 용이하다. PFC 여과장치의 성능평가결과 모의입자의 농도 증가 시 flux가 감소하였고, Pre-filter()와 final-filter() 두개를 장착하여 여과시간에 따른 flux의 감소를 개선하였다. 개발된 PFC 여과장치는 분당 약 0.2L의 PFC 폐액을 처리 할 수 있다.
Type 304 stainless steel 시편에 느슨하게 붙어있는 분말에 대한 초음파 제염 거동을 조사하였다. 매질을 물, PFC 및 의 음이온 계면활성제를 함유한 PFC 용액으로 변화시킴에 따라 제염계수는 20, 50 및 200으로 증가하였다. 제염계수에 차이가 생기는 이유를 초음파 매질의 표면장력 및 양으로 하전된 산화물 표면과 음이온 계면활성제 사이의 상호작용에 기인한 것으로 설명할 수 있었다. 음이온 계면활성제를 함유한 PFC 용액 내에서 분말로 오염된 평면 시편, 파이프 시편, 틈새 시편 및 용접 시편에 대한 초음파 제염 효과를 관찰하였다. 연구된 모든 시편에 대해, 대부분의 오염물이 완벽하게 제거되는 것으로 나타났다. 길이가 6cm인 파이프 시편에 대해서는 오염물의 가 제거되었다.
원자력연구시설의 핫셀 내 바닥이나 장치표면에 부착된 고방사능분진의 제거를 위해서 PFC제염기술을 적용한다. 고가인 PFC 용액의 재사용을 위해서는 여과장치의 개발이 필요하고 제염종료 후 이차폐기물의 양을 최소화할 필요가 있다. PFC 제염폐액 내 방사성 입자를 제거하기 위해 핫셀 내의 고방사능분진의 오염 특성을 조사했다. 여과 막을 이용한 입자의 제거효율 측면에서 보면 세라믹 , PVDF, PP 막 모두가 95 이상의 높은 여과 성능을 보였다. 기공 크기가 같은 동일 여과 막에서는 입자가 크거나 가하는 압력이 높을수록 좀더 높은 제거효율을 나타내었고, 3psi이하에서는 PVDF의 제거효율이 다른 막에 비해 작게 나타났다. 플럭스 성능은 PVDF 막이 가장 높은 수준을 나타냈고 세라믹과 PP 막에서는 다소 낮은 성능을 보였다. PVDF 막은 낮은 압력과 짧은 여과시간으로 최대(한계)플럭스에 도달함을 확인하였다. 세라믹 막은 모의입자의 제거 효율은 높지만 다소 낮은 Flux 성능을 나타냈다. 또한, 막 자체의 비싼 가격과 쉽게 부서지는 성질의 단점을 지니고 있지만 무기화합물의 재질로 되어있기 때문에 알파방사능 환경에서 H, 가스를 발생하는 고분자 막인 PVDF, PP 막과 비교하여 훨씬 안정적이었다. 그리고 이들 소수성 여과막들의 특성 비교를 바탕으로 세라믹 막을 적용한 PFC 실증 여과장치의 공정도를 살펴보았다.
원자력시설 핫셀 (Hot Cell)내에서 핵종실험 시 발생하는 고방사능 분진(Hot Particulate)의 크기는 0.5300 이고 주 핵종은 UO였다. 핫셀 내의 고방사능 분진을 제거하기 위해 사이클론과 Bag/HEPA필터로 구성된 장치를 고안하였고, 이 장치의 사이클론에 의해 고방사능 분진을 최대로 포집할 수 있는 실험조건을 제시했다. 모의입자의 크기가 클수록 입자의 포집효율은 높았다. 모의 입자의 크기가 5 이상일 때, 입자의 포집효율은 보다 높았다. 모의 입자의 크기가 1.0 보다 작을 때, 포집효율은 보다 작았다. 모의 입자의 유입속도가 12 m/sec보다 클 때, 포집효율은 보다 높았다. 그러나 유입속도가 17 m/sec 보다 클 때 포집효율의 증가율은 크지 않았다. 모의입자의 포집효율은 Vortex Finder의 길이가 7.2 cm이하일 때, 길이의 증가와 함께 높아졌지만 7.2 cm 이상일 때는 낮아지기 시작했다. 그러므로 Vortex Finder의 길이가 7.2 cm 일 때, 최대포집효율을 나타냈다. 사이클론 밑에 보조콘 부착 시 모든 속도 범위에서 약 평균 정도 포집효율이 증가하므로 보조콘 부착효과가 크지 않았다.
Cs 이온에 대해 선택성을 갖는 ferrocyanide-음이온 교환수지를 제조하여 모의 제 염폐액 내에 존재하는 Cs 이온에 대한 흡착실험을 수행하였다. 제조된 이온교환 수지가 citric acid를 주제염제로 하는 제염폐액 내에 존재하는 Cs+ 이온에 대한 흡착능력은 상용 양이온교환수지에 비해 4배 이상 효과적인 것으로 나타났다. 모의 제염폐액과 선택성 이온교환수지를 접촉시킨 후 360분이 경과하면 금속이온에 대한 흡착반웅이 평형에 도달하였다. 본 연구범위에서 Co 이온농도가 필요이상 증가하게 되면 Cs 이온의 흡착율은 감소하였다. 과산화수소와 히드라진을 사용한 선택성 폐 이온교환수지의 재생실험 결과 전기중성화조건을 만족시키기 위해 Cs 이온이 수지로부터 용출됨을 확인하였고 열화없이 재 사용가능성을 확인하였다.