MA Al alloys are examined to determine the effects of alloying of Mg and Cu and rolling on tensile deformation behavior at 748 K over a wide strain rate range(10−4-103/s). A powder metallurgy aluminum alloy produced from mechanically alloyed pure Al powder exhibits only a small elongation-to-failure(εf < ~50%) in high temperature(748 K) tensile deformation at high strain rates( = 1-102/s). εf in MA Al-0.5~4.0Mg alloys increases slightly with Mg content(εf = ~140% at 4 mass%). Combined addition of Mg and Cu(MA Al-1.5%Mg-4.0%Cu) is very effective for the occurrence of superplasticity(εf > 500%). Warm-rolling(at 393-492 K) tends to raise εf. Lowering the rolling-temperature is effective for increasing the ductility. The effect is rather weak in MA pure Al and MA Al-Mg alloys, but much larger in the MA Al-1.5%Mg-4.0%Cu alloy. Additions of Mg and Cu and warm-rolling of the alloy cause a remarkable reduction in the logarithm of the peak flow stress at low strain rates ( < ~1/s) and sharpening of microstructure and smoothening of grain boundaries. Additions of Mg and Cu make the strain rate sensitivity(the m value) larger at high strain rates, and the warm-rolling may make the grain boundary sliding easier with less cavitation. Grain boundary facets are observed on the fracture surface when εf is large, indicating the operation of grain boundary sliding to a large extent during superplastic deformation.
Binary Ti-Al alloys below 51.0 mass%Al content exhibit a breakaway, transferring from parabolic to linear rate law. The second Al2O3 layer might have some protectiveness before breakaway. Ti-63.1 mass%Al oxidized at 1173 K under parabolic law. Breakaway oxidation is observed in every alloy, except for Ti-63.1 mass%Al. After breakaway, oxidation rates of the binary TiAl alloys below 34.5 mass%Al obey almost linear kinetics. The corrosion rate of Ti-63.1 mass%Al appears to be almost parabolic. As content greater than 63.0 mass% is found to be necessary to form a protective alumina film. Addition of Mo improves the oxidation resistance dramatically. No breakaway is observed at 1123 K, and breakaway is delayed by Mo addition at 1173 K. At 1123 K, no breakaway, but a parabolic increase in mass gain, are observed in the Mo-added TiAl alloys. The binary Ti-34.5 mass%Al exhibits a transfer from parabolic to linear kinetics. At 1173 K, the binary alloys show vary fast linear oxidation and even the Mo-added alloys exhibit breakaway oxidation. The 2.0 mass%Mo-added TiAl exhibits a slope between linear and parabolic. At values of 4.0 and 6.0 mass% added TiAl alloys, slightly larger rates are observed than those for the parabolic rate law, even after breakaway. On those alloys, the second Al2O3 layer appears to be persistently continuous. Oxidation resistance is considerably degraded by the addition of Mn. Mn appears to have the effect of breaking the continuity of the second Al2O3 layer.
Crystal structure of the L12 type (Al,X)3Ti alloy (X = Cr,Cu) is analyzed by X-ray diffractometry and the nonuniform strain behavior at high temperature is investigated. The lattice constants for the L12 type (Al,X)3Ti alloys decrease in the order of the atomic number of the substituted atom X, and the hardness tends to increase. In a compressive test at around 473K for Al67.5Ti25Cr7.5, Al65Ti25Cr10 and Al62.5Ti25Cu12.5 alloys, it is found that the stress-strain curves showed serration, and deformation rate dependence appeared. It is assumed that the generation of serration is due to dynamic strain aging caused by the diffusion of solute atoms. As a result, activation energy of 60-95 kJ/mol is obtained. This process does not require direct involvement. In order to investigate the generation of serrations in detail, compression tests are carried out under various conditions. As a result, in the strain rate range of this experiment, serration is found to occur after 470K at a certain critical strain. The critical strain increases as the strain rate increases at constant temperature, and the critical strain tends to decrease as temperature rises under constant strain rate. This tendency is common to all alloys produced. In the case of this alloy system, the serration at around 473K corresponds to the case in which the dislocation velocity is faster than the diffusion rate of interstitial solute atoms at low temperature.