When a radial collector well is installed and operated for agricultural purposes, negative impacts may be observed over time due to the clogging of horizontal arms, such as reduced groundwater discharge and water quality deterioration. When radial collector well No. 2 was rehabilitated using the high-pressure impulse generation technique, the specific capacity and transmissivity were increased by 43.1 and 100.6%, respectively. In contrast, according to air surging, the specific capacity and transmissivity increased by 33.8 and 85.8%, respectively, compared to the initial rate before rehabilitation. During the operation of radial collector wells since construction, the time of well rehabilitation can be effectively determined by continuously monitoring the groundwater level and pumping rate of the radial collector wells, thereby preventing a decrease in productivity.
Rorabaugh(1953)에 의해 재정리된 단계양수시험 해석해 sw = B C p 는 단열암반대수층에서 비선형 으로 증가하는 수위강하에 매우 적합하며, 현장에서 관측된 수위강하 값과 추정된 수위강하 사이의 제곱 근 평균제곱오차(RMSE) 값이 매우 낮음을 보여주었다. 우물수두손실(C p )의 C 값은 3.689×10-19 5.825 ×10-7, P 값은 3.459 8.290의 범위로 산정되었으며, 지표로부터 하부심도로 내려 갈수록 양수율 증가에따른 수위강하는 매우 크게 나타났다. 단열암반대수층에서의 우물수두손실은 다공질매질에서와 달리 단 열특성(단열의 틈, 간격, 상호 연결성)에 의한 영향으로 나타나므로, 우물수두손실의 C 와 P 값은 단열암 반대수층의 난류구간과 고·저 투수성 단열암반의 특성을 해석하는데 매우 중요하다. 그 결과, 우물수두 손실 항의 C 와 P 값에 대한 회귀분석 결과로부터 암반대수층의 난류구간과 수리특성의 관계가 파악되었 으며, C 와 P 값의 관계가 단열암반대수층의 수리특성 해석에 있어 매우 유용함을 확인할 수 있었다.
Riverbank Filtration (RBF) is a kind of indirect artificial recharge method and is useful in obtaining higher-quality source water than surface water when procuring municipal water. This study evaluated optimal riverbank filtered water and the productivity of the radial collector wells on Ttansum Island in the area downstream of the Nakdong River, where Gimhae City is constructing a municipal water plant for the purpose of acquiring high-quality water. The RBF wells are planned to provide water to the citizens of Gimhae City through municipal water works. Groundwater flow modeling was performed with the following four scenarios: (a) 9 radial collector wells, (b) 10 radial collector wells, (c) 10 radial collector wells and two additional vertical wells, and (d) 12 radial collector wells. This study can be useful in determineing the optimum production rate of bank filtrated water not only in this study area but also in other places in Korea.
At riverbank filtration sites, groundwater levels of alluvial aquifers near rivers are sensitive to variation in river discharge and pumping quantities. In this study, the groundwater level fluctuation, pumping quantity, and streamflow rate at the site of a riverbank filtration plant, which produces drinking water, in the lower Nakdong River basin, South Korea were interrelated. The relationship between drawdown ratio and river discharge was very strong with a correlation coefficient of 0.96, showing a greater drawdown ratio in the wet season than in the dry season. Autocorrelation and cross-correlation were carried out to characterize groundwater level fluctuation. Autoregressive model analysis of groundwater water level fluctuation led to efficient estimation and prediction of pumping for riverbank filtration in relation to river discharge rates, using simple inputs of river discharge and pumping data, without the need for numerical models that require data regarding several aquifer properties and hydrologic parameters.