검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 224

        1.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The initial development plans for the six reactor designs, soon after the release of Generation IV International Forum (GIF) TRM in 2002, were characterized by high ambition [1]. Specifically, the sodium-cooled fast reactor (SFR) and very-high temperature reactor (VHTR) gained significant attention and were expected to reach the validation stage by the 2020s, with commercial viability projected for the 2030s. However, these projections have been unrealized because of various factors. The development of reactor designs by the GIF was supposed to be influenced by events such as the 2008 global financial crisis, 2011 Fukushima accident [2, 3], discovery of extensive shale oil reserves in the United States, and overly ambitious technological targets. Consequently, the momentum for VHTR development reduced significantly. In this context, the aims of this study were to compare and analyze the development progress of the six Gen IV reactor designs over the past 20 years, based on the GIF roadmaps published in 2002 and 2014. The primary focus was to examine the prospects for the reactor designs in relation to spent nuclear fuel burning in conjunction with small modular reactor (SMR), including molten salt reactor (MSR), which is expected to have spent nuclear fuel management potential.
        4,000원
        2.
        2023.11 구독 인증기관·개인회원 무료
        The nuclear fuel that melted during the Fukushima nuclear accident in 2011 is still being cooled by water. In this process, contaminated water containing radioactive substances such as cesium and strontium is generated. The total amount of radioactive pollutants released by the natural environment due to the nuclear accident in Fukushima in 2011 is estimated to be 900 PBq, of which 10 to 37 PBq for cesium. Radioactive cesium (137Cs) is a potassium analog that exists in the water in the form of cations with similar daytime behavior and a small hydration radius and is recognized as a radioactive nuclide that has the greatest impact on the environment due to its long half-life (about 30 years), high solubility and diffusion coefficient, and gamma-ray emission. In this study, alginate beads were designed using Prussian blue, known as a material that selectively adsorbs cesium for removal and detection of cesium. To confirm the adsorption performance of the produced Prussian blue, immersion experiments were conducted using Cs standard solution, and MCNP simulations were performed by modeling 1L reservoir to conduct experiments using radioactive Cs in the future. An adsorption experiment was conducted with water containing standard cesium solution using alginate beads impregnated with Prussian blue. The adsorption experiment tested how much cesium of the same concentration was adsorbed over time. As a result, it was found that Prussian blue beads removed about 80% of cesium within 10-15 minutes. In addition, MCNP simulation was performed using a 1 L reservoir and a 3inch NaI detector to optimize the amount of Prussian blue. The results of comparing the efficiency according to the Prussian volume was shown. It showed that our designed system holds great promise for the cleanup and detection of radioactive cesium contaminated seawater around nuclear plants and/or after nuclear accidents. Thus, this work is expected to provide insights into the fundamental MCNP simulation based optimization of Prussian blue for cesium removal and this work based MCNP simulation will pave the way for various practical applications.
        3.
        2023.11 구독 인증기관·개인회원 무료
        The domestic Pressurized Heavy Water Reactor (PWHR) nuclear power plant, Wolsong Unit 1, was permanently shut down on December 24, 2019. However, research on decommissioning has mainly focused on Pressurized Water Reactors (PWRs), with a notable absence of both domestic and international experience in the decommissioning of PHWRs. If proper business management such as radiation safety and waste is not performed, it can lead to increased business risks and costs in decommissioning. Therefore, the assessment of waste volume and cost, which provide fundamental data for the nuclear decommissioning process, is a crucial technical requirement before initiating the actual decommissioning of Wolsong Unit 1. Decommissioning radiation-contaminated structures and facilities presents significant challenges due to high radiation levels, making it difficult for workers to access these areas. Therefore, technology development should precede decommissioning process assessments and safety evaluations, facilitating the derivation of optimal decommissioning procedures and ensuring worker safety while enhancing the efficiency of decommissioning operations. In this study, we have developed a program to estimate decommissioning waste amounts for PHWRs, building upon prior research on PWR decommissioning projects while accounting for the specific design characteristics of PHWRs. To evaluate the amount of radioactive waste generated during decommissioning, we considered the characteristics of radioactive waste, disposal methods, packaging container specifications, and the criteria for the transfer of radioactive waste to disposal operators. Based on the derived algorithm, we conducted a detailed design and implemented the program. The proposed program is based on 3D modeling of the decommissioning components and the calculation of the Work Difficulty Factor (WDF), which is used to determine the time weighting factors for each task. Program users can select the cutting and packaging conditions for decommissioning components, estimate waste amount based on the chosen decommissioning method, and calculate costs using time weighting factors. It can be applied not only to PHWRs, but also to PWRs and non-nuclear fields, providing a flexible tool for optimizing decommissioning process.
        4.
        2023.11 구독 인증기관·개인회원 무료
        Radioactive contamination distribution in nuclear facilities is typically measured and analyzed using radiation sensors. Since generally used detection sensors have relatively high efficiency, it is difficult to apply them to a high radiation field. Therefore, shielding/collimators and small size detectors are typically used. Nevertheless, problems of pulse accumulation and dead time still remain. This can cause measurement errors and distort the energy spectrum. In this study, this problem was confirmed through experiments, and signal pile-up and dead time correction studies were performed. A detection system combining a GAGG sensor and SiPM with a size of 10 mm × 10 mm × 10 mm was used, and GAGG radiation characteristics were evaluated for each radiation dose (0.001~57 mSv/h). As a result, efficiency increased as the dose increased, but the energy spectrum tended to shift to the left. At a radiation dose intensity of 400 Ci (14.8 TBq), a collimator was additionally installed, but efficiency decreased and the spectrum was distorted. It was analyzed that signal loss occurred when more than 1 million particles were incident on the detector. In this high-radioactivity area, quantitative analysis is likely to be difficult due to spectral distortion, and this needs to be supplemented through a correction algorithm. In recent research cases, the development of correction algorithms using MCNP and AI is being actively carried out around the world, and more than 98% of the signals have been corrected and the spectrum has been restored. Nevertheless, the artificial intelligence (AI) results were based on only 2-3 overlapping pulse data and did not consider the effect of noise, so they did not solve realistic problems. Additional research is needed. In the future, we plan to conduct signal correction research using ≈10×10 mm small size detectors (GAGG, CZT etc.). Also, the performance evaluation of the measurement/analysis system is intended to be performed in an environment similar to the high radiation field of an actual nuclear facility.
        5.
        2023.11 구독 인증기관·개인회원 무료
        Activated carbon (AC) is used for filtering organic and radioactive particles, in liquid and ventilation systems, respectively. Spent ACs (SACs) are stored till decaying to clearance level before disposal, but some SACs are found to contain C-14, a radioactive isotopes 5,730 years halflife, at a concentration greater than clearance level concentration, 1 Bq/g. However, without waste acceptance criteria (WAC) regarding SACs, SACs are not delivered for disposal at current situation. Therefore, this paper aims to perform a preliminary disposal safety examination to provide fundamental data to establish WAC regarding SACs SACs are inorganic ash composed mostly of carbon (~88%) with few other elements (S, H, O, etc.). Some of these SACs produced from NPPs are found to contain C-14 at concentration up to very-low level waste (VLLW) criteria, and few up to low-level waste (LLW) criteria. As SACs are in form of bead or pellets, dispersion may become a concern, thus requiring conditioning to be indispersible, and considering VLL soils can be disposed by packaging into soft-bags, VLL SACs can also be disposed in the same way, provided SACs are dried to meet free water requirement. But, further analysis is required to evaluate radioactive inventory before disposal. Disposability of SACs is examined based on domestic WAC’s requirement on physical and chemical characteristics. Firstly, particulate regulation would be satisfied, as commonly used ACs in filters are in size greater than 0.3 mm, which is greater than regulated particle size of 0.2 mm and below. Secondly, chelating content regulation would be satisfied, as SACs do not contain chelating chemicals. Also, cellulose, which is known to produce chelating agent (ISA), would be degraded and removed as ACs are produced by pyrolysis at 1,000°C, while thermal degradation of cellulose occurs around 350~600°C. Thirdly, ignitability regulation would be satisfied because as per 40 CFR 261.21, ignitable material is defined with ignition point below 60°C, but SACs has ignition point above 350°C. Lastly, gas generation regulation would be satisfied, as SACs being inorganic, they would be targeted for biological degradation, which is one of the main mechanism of gas generation. Therefore, SACs would be suitable to be disposed at domestic repositories, provided they are securely packaged. Further analysis would be required before disposal to determine detailed radioactive inventories and chemical contents, which also would be used to produce fundamental data to establish WAC.
        6.
        2023.11 구독 인증기관·개인회원 무료
        Domestic waste acceptance criteria (WAC) require flowable or homogeneous wastes, such as spent resin, concentrated waste, and sludge, etc., to be solidified regardless of radiation level, to provide structural integrity to prevent collapse of repository, and prevent leaching. Therefore, verylow level (VLL) spent resin (SR) would also require to be solidified. However, such disposal would be too conservative, considering IAEA standards do not require robust containment and shielding of VLL wastes. To prevent unnecessary cost and exposure to workers, current WAC advisable to be amended, thus this paper aims to provide modified regulation based on reviewed engineering background of solidification requirement. According to NRC report, SR is classified as wet-solid waste, which is defined as a solid waste produced from liquid system, thus containing free-liquid within the waste. NRC requires liquid wastes to be solidified regardless of radiation level to prevent free liquid from being disposed, which could cause rapid release of radionuclides. Furthermore, considering class A waste does not require structural integrity, unlike class B and C wastes, dewatering would be an enough measure for solidification. This is supported by the cases of Palo Verde and Diablo Canyon nuclear power plants, whose wet-solid wastes, such as concentrated wastes and sludge, are disposed by packaging into steel boxes after dewatering or incineration. Therefore, dewatering VLL spent resin and packaging them into structural secure packaging could satisfy solidification goal. Another goal of solidification is to provide structural support, which was considered to prevent collapse of soil covers in landfills or trenches. However, providing structural support via solidification agent (ex. Cement) would be unnecessary in domestic 2nd phase repository. As the domestic 2nd phase repository is cementitious structure, which is backfilled with cement upon closure, the repository itself already has enough structural integrity to prevent collapse. Goldsim simulation was run to evaluate radiation impact by VLL SR, with and without solidification, by modelling solidified wastes with simple leaching, and unsolidified wastes with instant release. Both simulations showed negligible impact on radiation exposure, meaning that solidifying VLL SR to delay leaching would be irrational. Therefore, dewatering VLL SR and packaging it into a secure drum (ex. Steel drum) could achieve solidification goals described in NRC reports and provide enough safety to be disposed into domestic repositories. In future, the studied backgrounds in this paper should be considered to modify current WAC to achieve efficient waste management.
        10.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To improve the quality of jujube (Zizyphus jujuba Miller var. hoonensis), which is a fruit of health functional, the effect of polyphenol preparation treatment on the fruit characteristics of two cultivars (cv. Bokjo and cv. Sangwang) of jujube was investigated. There was no difference in the height and breast diameter of jujubes tested between the polyphenol treatments and non treatment. Jujube trees treated with polyphenol preparation produced significantly more fruit than untreated in both cultivars. In cvultivar of Bokjo, the polyphenol preparation treatment increased the fruit's fresh weight and dry weight more than two times, respectively, compared to the untreated treatment. Polyphenol preparation tr eatments also changed the leaf characteristics of jujube trees. In the polyphenol-treated trees, leaf thickness tended to be thickest at the top and thinnest at the bottom. Polyphenol preparation treated jujube trees showed no difference in chlorophyll content. Moisture content was slightly higher in the untreatment than in the treatments. Visually, the polyphenol preparation treatment had a dark green color. Jujubes treated with polyphenol preparations showed differences in polyphenol content in fruits. The polyphenol content in both peel and flesh of the treatments were much higher than that of the untreatment. Reducing sugar was contained more in the peel than in the flesh and was higher in the untreatment than in the polyphenol preparation treatments. Treatment with polyphenol preparation showed differences in fruit appearance. As described above, it was found that the treatment of polyphenol preparation changed the leaves, fruit shapes and components of jujube trees. In particular, jujubes treated with polyphenol preparations are expected to contribute significantly to eco-friendly and highly functional jujube cultivation, as they appear to produce many fruits and increase the content of polyphenols and sugars.
        4,200원
        11.
        2023.05 구독 인증기관·개인회원 무료
        With the recent concern regarding cellulose enhancing radionuclide mobility upon its degradation to ISA, disposal of cellulosic wastes is being held off until the disposal safety is vindicated. Thus, a rational assessment should be conducted, applying an appropriate cellulose degradation model considering the disposal environment and cellulose degradation mechanisms. In this paper cellulose degradation mechanisms and the disposal environment are studied to propose the best-suitable cellulose degradation model for the domestic 1st phase repository. For the cellulose to readily degrade, the pH should be greater than 12.5. As in the case of SKB, 1BLA is excluded from the safety assessment because the pH of 1BLA remains below 12.5. Furthermore, despite cellulose degradation occurring, it does not always produce ISA. At low Ca2+ concentration, the ISA yield rate is around 25%, but at high Ca2+ concentration, the ISA yield rate increases up to 90%. Thus, for the cellulose to be a major concern, both pH and Ca2+ concentration conditions must be satisfied. To satisfy both conditions, the cement hydration must be in 2nd phase, when the porewater pH remains around 12.5 and a significant amount of Ca2+ ion is leaching out from the cement. However, according to the safety evaluation and domestic research, 2nd phase of cement hydration for silo concrete would achieve a pH of around 12.4, dissatisfying cellulose degradation condition like in 1BLA. Thus, cellulose degradation would be unlikely to occur in the domestic 1st phase repository. To derive waste acceptance criteria, a quantitative evaluation should be conducted, conservatively assuming cellulose is degraded. To conduct a safety evaluation, an appropriate degradation model should be applied to determine the degradation rate of cellulose. According to overseas research, despite the mid-chain scission being yet to be seen in the experiments, the degradation model considering mid-chain scission is applied, resulting in an almost 100% degradation rate. The model is selected because the repositories are backfilled with cement, achieving a pH greater than 13, so extensive degradation is reasonably conservative. However, under the domestic disposal condition, where cellulose degradation is unlikely to occur, applying such model would be excessively conservative. Thus, the peeling and stopping model derived by Van Loon and Haas, which suggests 10~25% degradation rate, is reasonably conservative. Based on this model, cellulose would not be a major concern in the domestic 1st phase repository. In the future, this study could be used as fundamental data for planning waste acceptance criteria.
        12.
        2023.05 구독 인증기관·개인회원 무료
        Concerns with colloids, dispersed 1~1,000 nm particles, in the LILW repository are being raised due to their potential to enhance radionuclide release. Due to their large surface areas, radionuclides may sorb onto mobile colloids, and drift along with the colloidal transport, instead of being sorbed onto immobile surfaces. To prevent adverse implications on the safety of the repository, the colloidal impact must be evaluated. In this paper, colloid analysis done by SKB is studied, and factors to be considered for the safety assessment of colloids are analyzed. First, the colloid generation mechanism should be analyzed. In a cementitious repository, due to a highly alkaline environment, colloid formation from wastes may be promoted by the decomposition of organic materials, dissolution of inorganic materials, and corrosion of metals. Radiolysis is excluded when radionuclide inventory is moderate, as in the case of SKB. Second, colloid stability should be evaluated to determine whether colloids remain in dispersion. Stable colloids acquire electric charges, allowing particles to continuously repel one another to prevent coagulation. Thus, stability depends on the pH and ionic condition of the surroundings, and colloid composition. For instance, under a highly alkaline cementitious environment, colloids tend to be negatively charged, repelling each other, but Ca2+ ion from cement, acting as a coagulant, makes colloid unstable, promoting sedimentation. As in the case of SKB, the colloidal impact is assumed negligible in the silo, BMA, and BTF due to their extensive cement contents, but for BLA, with relatively less cement source, the colloidal impact is a potential concern. Third, colloid mobility should be assessed to appraise radionuclide release via colloid transport. The mobility depends on the density and size of colloids, and flow velocity to commence motion. As a part of the assessment, the filtration effect should also be included, which depends on pore size and structure. As in the case of SKB, due to static hydraulic conditions and engineering barriers, acting as efficient filters, colloidal transport is expected to be unlikely. In the domestic underground repository, the highly alkaline environment would lead to colloid formation, but due to high Ca2+ concentration and low flow velocity, colloids would achieve low stability and mobility, thus colloidal impact would be a minor concern. In the future, with further detailed analysis of each factor, waste composition, and disposal condition, reliable data for safety evaluation could be generated to be used as fundamental data for planning waste acceptance criteria.
        19.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study examined the subacute oral toxicity of Dendropanax morbiferus H.Lév leaves hot-water extracts (DMWE) using male and female Spargue-Dawley rats. Rats were orally administered the DMWE at dose levels of 0, 250, 500, 1,000, and 2,000 mg/kg body weight (BW) for four weeks. For experimental period, clinical signs and the number of deaths were examined, and feed intake and BW of all experimental animals were measured once a week for four weeks. At the end of the experiment, blood samples were collected from all rats, and all animals were euthanized and autopsies were performed to collect major organs. No dead animals were found during the experimental period. In addition, no differences were found between control and DMWE-treated groups in feed intakes, BW changes, organ weights, clinical signs, hematological parameters, and serum biochemical parameters. The results of this study provided evidence that oral administration of DMWE at the dose of 2,000 mg/kg BW is safe in rats and may not exert severe toxic effects.
        4,000원
        20.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the acute toxicity of Dendropanax morbiferus H.Lév leaf hot-water extracts (DMWE) was examined in male and female ICR mice. Mice were orally administered the DMWE at dose levels of 0, 250, 500, 1,000 and 2,000 mg/kg body weight (BW) for single-dose toxicity test. There were no significant differences in change of BW between control and all DMWE treated-groups. In hematological and blood biochemical analysis, none of the parameters were affected by the DMWE. Similarly, there were no significant effects on markers for liver and kidney functions in all DMWE treated-groups. Since there were no adverse effects of the DMWE in single oral toxicity tests, even at the highest doses, it was concluded that the lethal dose 50 (LD50) of DMWE is estimated at > 2,000 mg/kg BW.
        4,000원
        1 2 3 4 5