검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2013.07 서비스 종료(열람 제한)
        Phosphorus is one of the macronutrients essential for plant growth and development, as well as crop productivity. Many soils around the world are deficient in phosphate (Pi) that plants can utilize. To cope with the stress of Pi starvation, plants have evolved many adaptive strategies, such as changes of root architecture and enhanced Pi acquisition form soil. To understand molecular mechanism underlying Pi starvation stress signaling, we characterized the activation-tagged mutant showing altered responses to Pi deficiency compared to wild type Arabidopsis and named hsp3 (hypersensitive to Pi starvation3). hsp3 mutant exhibits enhanced phosphate transporter activity, resulting in higher Pi content than wild type. However, in root architectural change under Pi starvation, hsp3 shows hyposensitive responses than wild type, such as longer primary root elongation, lower lateral root density. Histochemical analysis using hsp3 mutant expressing auxin-responsive DR5::GUS reporter gene, indicated that auxin allocation from primary to lateral roots under Pi starvation is aborted in hsp3 mutant. Molecular genetic analysis of hsp3 mutant revealed that the mutant phenotype is caused by the lesion in ENHANCED SILENCING PHENOTYPE4 (ESP4) gene whose function is proposed in mRNA 3’ end processing. Here, we propose that mRNA processing plays a crucial role in Pi homeostasis in Arabidopsis.
        2.
        2013.07 서비스 종료(열람 제한)
        In order to adapt to various environmental stresses, plants have employed diverse regulatory mechanisms of gene expression. Epigenetic changes, such as DNA methylation and histone modifications play an important role in gene expression regulation under stress condition. It has been known that some of epigenetic modifications are stably inherited after mitotic and meiotic cell divisions, which is known as stress memory. To understand molecular mechanisms underlying stress memory mediated by epigenetic modifications, we developed Arabidopsis suspension-cultured cell lines adapted to high salt by stepwise increases in the NaCl concentration up to 120 mM. Adapted cell line to 120 mM NaCl, named A120, exhibited enhanced salt tolerance compared to unadapted control cells (A0). Moreover, the salt tolerance of A120 cell line was stably maintained even in the absence of added NaCl, indicating that the salt tolerance of A120 cell line was memorized even after the stress is relieved. By using salt adapted and stress memorized cell lines, we intend to analyze the changes of DNA methylation, histone modification, transcriptome, and proteome to understand molecular mechanisms underlying stress adaptation as well as stress memory in plants.
        3.
        2013.07 서비스 종료(열람 제한)
        Small RNAs including microRNAs (miRNAs) and small interfering RNAs (siRNAs) play crucial roles in post-transcriptional gene silencing (PTGS) in eukaryotes. Small RNAs function cell-autonomously as well as non-cell-autonomously. It has been well characterized that pathogenic fungi secrete some effector molecules, which facilitate their infection into plants. However, it is not clear whether molecules in plant cells are able to move into fungal cells during infection. To test if small RNAs generated from plant cells can also move to fungal cells during infection, we generated transgenic Arabidopsis and rice plants ectopically expressing either double-stranded RNA interference (dsRNAi) or artificial miRNA (amiRNA) constructs targeting GFP gene. And then these transgenic plants were inoculated with transgenic rice blast fungus, Magnaporthe oryzae, expressing GFP transgene. Here, we showed that ectopic expression of both dsRNAi and amiRNA targeting GFP gene in transgenic plants significantly suppressed GFP expression in rice blast fungi inoculated, indicating that small RNA molecules generated in plant cells can move into infected fungal cells and efficiently degrade fungal GFP transcripts. Our results would provide a new small RNA-based strategy for the development of resistant crops against fungal pathogens.