We present the mid-infrared (MIR) luminosity function (LF) of local (z < 0.3) star-forming (SF) galaxies in the North Ecliptic Pole (NEP) field. This work is based on the NEP-Wide point source catalogue and the spectroscopic redshift (z) data for 1700 galaxies obtained by the optical follow-up survey with MMT/Hectospec and WIYN/Hydra. The AKARI's continuous 2 - 24 μm coverage and the spectroscopic redshifts enable us to determine the spectral energy distribution (SED) in the mid-infrared and derive the luminosity functions of galaxies. Our 8 μm LF finds good agreements with the results from SWIRE field over the wide luminosity range, while showing signicant difference from the NOAO deep data in the faint end. The comparison with higher-z sample shows significant luminosity evolution from z > 0.3 to local universe. 12 μm LF also shows a clear indication of luminosity evolution.
There exists strong evidence supporting the co-evolution of central supermassive black holes and their host galaxies; however it is still under debate how such a relation comes about and whether it is relevant for all or only a subset of galaxies. An important mechanism connecting AGN to their host galaxies is AGN feedback, potentially heating up or even expelling gas from galaxies. AGN feedback may hence be responsible for the eventual quenching of star formation and halting of galaxy growth. A rich multi- wavelength dataset ranging from the X-ray regime (Chandra), to far-IR (Herschel), and radio (WSRT) is available for the North Ecliptic Pole field, most notably surveyed by the AKARI infrared space telescope, covering a total area on the sky of 5.4 sq. degrees. We investigate the star formation properties and possible signatures of radio feedback mechanisms in the host galaxies of 237 radio sources below redshift z = 2 and at a radio 1.4 GHz ux density limit of 0.1 mJy. Using broadband SED modelling, the nuclear and host galaxy components of these sources are studied simultaneously as a function of their radio luminosity. Here we present results concerning the AGN content of the radio sources in this eld, while also offering evidence showcasing a link between AGN activity and host galaxy star formation. In particular, we show results supporting a maintenance type of feedback from powerful radio-jets.