딥러닝(DL: Deep Learning)의 발전으로 오늘날 다양한 분야에서 AI 모델이 만들어지고 사용되고 있다. 오늘날, 컴퓨터의 발전과 DL 알고리즘의 발전에 의해, DL 기반 AI 모델은 수많은 데이터를 학습하고 스스로 규칙을 찾을 수 있다. DeepMind의 Alphago는 학습 데이터 만으로 게임의 규칙을 스스로 판단하고 고수준의 게임 플 레이를 할 수 있다는 가능성을 보여준다. 이런 다양한 DL 알고리즘이 게임 분야에 적용되고 있지만, 스포츠 게임 같이 팀의 전술과 개인 플레이가 공존하는 분야에서는 단일 AI 모델만으로 성공적인 플레이를 이끌어 내기에는 한계가 존재한다. 오늘날, 고품질의 스포츠 게임은 쉽게 접할 수 있다. 하지만, 게임 AI 연구자들이 이런 고품질의 스포츠 게임에 맞는 AI 모델을 개발하기 위해서는 게임 코드 소스를 받거나 게임 회사에서 테 스트용 시뮬레이터를 제공해줘야만 할 수 있다. 게임 AI 연구자들이 활발한 스포츠 게임 분야의 AI 모델을 개 발하기 위해서는 스포츠 게임의 규칙과 특징이 반영되고 접근하기 쉬운 테스트 환경(Test Environment)이 필요 하다. 본 논문에서는 팀의 전술과 개인 플레이가 중요한 스포츠 게임 분야에서 AI 모델을 만들고 테스트할 수 있는 규칙기반 축구 게임 프레임워크를 제안한다.