We provide a new physical insight on the hot molecular clouds near the nucleus of the heavily obscured AGN IRAS 01250+2832, based on the results of near-infrared high-resolution spectroscopy of gaseous CO ro-vibrational absorption lines with Subaru/IRCS. The detected CO absorption lines up to highly excited rotational levels reveal that hot dense molecular clouds exist around the AGN under the peculiar physical conditions.
We combine data from two all-sky surveys, the Swift/Burst Alert Telescope 22 Month Source Catalog and the AKARI Point Source Catalogue, in order to study the connection between the hard X-ray (> 10 keV) and infrared (IR) properties of local active galactic nuclei (AGN). We find two photometric diagnostics are useful for source classification: one is the X-ray luminosity vs. IR color diagram, in which type 1 radio-loud AGN are well isolated from other AGN. The second one uses the X-ray vs. IR color-color diagram as a redshift-independent indicator for identifying Compton-thick (CT) AGN. Importantly, CT AGN and starburst galaxies in composite systems can also be separated in this plane based upon their hard X-ray fluxes and dust temperatures. This diagram may be useful as a new indicator to classify objects in new surveys such as with WISE and NuSTAR.
Polycyclic aromatic hydrocarbons (PAHs) in Galactic planetary nebulae (PNe) are investigated by means of the unidentified infrared (UIR) bands. Continuous near- to mid-infrared spectra of PNe are obtained with the AKARI/IRC and the Spitzer/IRS. All 19 PNe in the present study show prominent dust emissions and we investigate the variation in the intensity ratios among the UIR bands. The ionization fraction and the size distribution of PAHs in PNe are derived using the UIR band ratios. We find that the ionization fraction of PAHs in PNe is around 0.0-0.6 and that small PAHs are scarce. The present result indicates a systematic trend of the 3.4 μm aliphatic feature to become weak as the PAH ionization fraction increases.
We present the latest results from the Mission Program NIRLT, the NIR spectroscopic observations of brown dwarfs using the IRC on board AKARI. The near-infrared spectra in the wavelength range between 2.5 and 5.0 μm is especially important to study the brown dwarf atmospheres because of the presence of non-blended bands of major molecules, including CH4 at 3.3 μm , CO2 at 4.2 μm , CO at 4.6 μm and H2O around 2.7 μm . Our observations were carried out in the grism-mode resulting in a spectral resolution of ~ 120. In total, 27 sources were observed and 18 good spectra were obtained. We investigate the behavior of three molecular absorption bands, CO, CH4 and CO2 , in brown dwarf spectra relative to their spectral types. We find that the CH4 band appears in the spectra of dwarfs later than L5 and CO band is seen in the spectra of all spectral types. CO2 is detected in the spectra of late-L and T type dwarfs.