This study analyzes human development convergence and the impact of funds transfer to the regions using σ and β-convergence analysis method. Observations were made in all Indonesia’s provinces in the period 2010-2019. The coefficient of variation calculation shows a dispersion in the inequality of human development, which means that convergence occurred. This is also documented by the clustering analysis results developed in the study. The results are in line with the hypothesis of neoclassical theory, which shows the tendency for provinces with lower human development levels to grow relatively faster. The dynamic panel data approach with the GMM model shows that a model built with explanatory variables for transfer of funds to regions may lead to the process of convergence of human development – 2.21% per year or 31 years to cover the half-life of convergence. This is a consequence of the Special Allocation Fund and the Village Fund, which positively impact the convergence process, and the General Allocation Fund and the Revenue Sharing Fund with negative signs slowing the convergence process. This evidence opens opportunities to review the justification of the weighting component in determining the amount of funds transferred to the region to accelerate the convergence process of human development.
This paper examines how macroeconomic variables, such as interest rate differences, inflation, exchange rates, economic growth and external debt growth, affect capital flight in the ASEAN-8 countries. We apply a panel data model with fixed effect estimation for the data for eight countries from the period 1994 to 2018. We use the residual approach used by the World Bank to measure the value of capital flight. The results show that the interest rate differences, exchange rates, economic growth and foreign debt growth had a positive and significant effect on outward capital flight. A further implication of this finding is that the interest rate differences, exchange rate, economic growth and foreign debt growth are factors that trigger an increase in capital outflow in the ASEAN-8 countries. Nonetheless, inflation rate is not considered to be the main factor influencing capital flight, as average inflation in the ASEAN-8 countries remains relatively stable. This paper will be beneficial for policymakers in the ASEAN-8 countries and encourage them to constantly pay attention to these four variables, as they significantly influence capital flight, whereas they can disregard the impact of the inflation variable that is not significant in influencing capital flight.
This paper investigates the impact of monetary policy independence shock on bond yield by allowing for heterogeneous coefficients in the model based on panel data for 19 developing countries using quarterly data from 1991 to 2016. First, we estimate the model using conventional panel VAR estimation with the assumption of homogeneous coefficients across countries. Second, by performing Chow and Roy-Zellner tests to check the homogeneity assumption, we find that the assumption does not hold in the model. Third, we apply a meangroup estimation for panel VAR as a solution for heterogeneity panel model. The results reveal that central bank independence is effective in reducing bond yield with the maximum at period 6 after the shock. Shock one standard deviation bond yield has a negative effect on consumption and investment. We determine that central bank independence has a contradictory effect on real activity; a negative effect on consumption but a positive influence on investment for the first two years after the shock. Additionally, we split our sample into three groups to make the subgroups pool. Our empirical result shows that monetary policy independence shock reduces bond yield. Meanwhile, the response of economic activity to bond yield varies for all three groups.
This paper examines how human capital and other economic variables, such as private investment, economic growth, government investment, inflation, and unemployment influence inequality in Indonesia’s provinces. We apply panel data model with fixed effect estimation for the data of 34 provinces from the period 2013 to 2019. We develop a new index for human capital using the education index approach. The results show that human capital has a negative and significant effect on income inequality. An increase in human capital is related to an increase in knowledge and competence due to the longer average school year and expectations of the school year. Human capital has increased the possibility of a person being accepted into the job market and earning a higher income; hence, it lowers income inequality. We also find that inflation leads to a higher gap of income distribution. A further implication of this situation is that the rise in inflation causes an increase in low-income people, and as a consequence, makes their lives worse off. This paper will be beneficial for policy-makers for whom human capital, which is measured using an education index, is an important factor that significantly affects income inequality, in addition to other economic factors.