검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        초음파 탐상은 다양한 콘크리트 구조물의 비파괴검사에서 활용된다. 본 연구에서는 골재형상을 고려한 골재-모르타르 모델 생성과 초음파 전파 해석을 수행하였다. 실제 골재형상을 반영하기 위해 이미지처리를 통한 골재-모르타르 단면으로부터 모르타르와 골재 영역을 파악하고, 영역 경계형상을 보존하면서 격자를 생성하는 기법을 개발하였다. 개발된 기법에서는 모든 격자가 4각형으로 생성된다. 골재-모르타르 모델을 통해 초음파 전파 해석을 수행하였고 모델을 반무한체로 간주하기 위해 CALM 기반 경계흡수 조건을 적용하였다. 골재 및 결함을 포함한 이미지로부터 격자를 생성한 뒤, 결함 영역에 포함된 격자를 제거하여 공극결함을 모사하였다. 본격적인 결함탐지 전 선행 해석을 통해 모델 동특성을 고려한 적절한 가진 주파수를 결정 및 가진 신호형상을 설계하였다. 이후 case 별 초음파 전파 해석을 통해 신호를 획득하고 신호 에너지 맵핑 작업을 통해 내부 결함을 가시화 하였다. 가시화 결과, 골재에 의한 다수 반사 및 산란현상이 관찰되지만 결함부에서 신호 에너지는 가장 높게 나타났으며 모든 해석 case에서 결함위치 추정이 가능하였다. 또한 균열의 경우 형상파악도 가능하였다.
        4,200원
        2.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to investigate the distribution patterns of displacement and acceleration fields in a nonlinear soil ground based on the interaction of high-speed train, wheel, rail, and ground. For this purpose, a high-speed train in motion was modeled as the actual wheel, and the vertical contact of wheel and rail and the lateral contact, caused by meandering motion, were simulated; this simulation was based on the moving mass analysis. The soil ground part was given the nonlinear behavior of the upper ground part by using the modified the Drucker– Prager model, and the changes in displacement and acceleration were compared with the behavior of the elastic and inelastic grounds. Using this analysis, the displacement and acceleration ranges close to the actual ground behavior were addressed. Additionally, the von-Mises stress and equivalent plastic strain at the ground were examined. Further, the equivalent plastic and total volumetric strains at each failure surface were examined. The variation in stresses, such as vertical stress, transverse pressure, and longitudinal restraint pressure of wheel-rail contact, with the time history was investigated using moving mass. In the case of nonlinear ground model, the displacement difference obtained based on the train travel is not large when compared to that of the elastic ground model, while the acceleration is caused to generate a large decrease.
        4,000원
        3.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We demonstrated the sensitivity of optically active single-walled carbon nanotubes (SWCNTs) with a diameter below 1 nm that were homogeneously dispersed in cement composites under a mechanical load. Deoxyribonucleic acid (DNA) was selected as the dispersing agent to achieve a homogeneous dispersion of SWCNTs in an aqueous solution, and the dispersion state of the SWCNTs were characterized using various optical tools. It was found that the addition of a large amount of DNA prohibited the structural evolution of calcium hydroxide and calcium silicate hydrate. Based on the in-situ Raman and X-ray diffraction studies, it was evident that hydrophilic functional groups within the DNA strongly retarded the hydration reaction. The optimum amount of DNA with respect to the cement was found to be 0.05 wt%. The strong Raman signals coming from the SWCNTs entrapped in the cement composites enabled us to understand their dispersion state within the cement as well as their interfacial interaction. The G and G’ bands of the SWCNTs sensitively varied under mechanical compression. Our results indicate that an extremely small amount of SWCNTs can be used as an optical strain sensor if they are homogeneously dispersed within cement composites.
        4,000원
        4.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The compressive strength and electrical resistance of pitch-based carbon fiber (CF) in cementitious materials are explored to determine the feasibility of its use as a functional material in construction. The most widely used CFs are manufactured from polyacrylonitrile (PAN-based CF). Alternatively, short CFs are obtained in an economical way using pitch as a precursor in a melt-blown process (pitch-based CF), which is cheaper and more eco-friendly method because this pitch-based CF is basically recycled from petroleum residue. In the construction field, PAN-based CFs in the form of fabric are used for rehabilitation purposes to reinforce concrete slabs and piers because of their high mechanical properties. However, studies have revealed that construction materials with pitch-based CF are not popular. This study explores the compressive strength and electrical resistances of a cement paste prism using pitch-based CF.
        4,000원