검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2007.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In external galaxies, the velocity dispersion of the atomic hydrogen gas shows a remarkably flat distribution with the galactocentric radius. This has been a long-standing puzzle because if the gas velocity dispersion is due to turbulence caused by supernova explosions, it should decline with radius. After a discussion on the role of spiral arms and ram pressure in driving interstellar turbulence in the outer parts of galactic disks, we argue that the constant bombardment by tiny high-velocity halo clouds can be a significant source of random motions in the outer disk gas. Recent observations of the flaring of H I in the Galaxy are difficult to explain if the dark halo is nearly spherical as the survival of the streams of tidal debris of Sagittarius dwarf spheroidal galaxy suggests. The radial enhancement of the gas velocity dispersion (at R > 25 kpc) due to accretion of cloudy gas might naturally explain the observed flaring in the Milky Way. Other motivations and implications of this scenario have been highlighted.
        4,000원
        2.
        2007.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Here we analyze if the ionized shells associated with giant HII regions represent the progenitors of the larger neutral hydrogen supershells detected in the Milky Way and other spiral and dwarf irregular galaxies. We calculate the evolutionary tracks that 12 HII shells found by Relano et al. (2005, 2007) would have if they expanded into the interstellar medium because of multiple supernovae explosions occurring inside the cavity. We find, contrary to Relano et al. (2007), that the evolutionary tracks of these HII shells are inconsistent with the observed parameters of the largest and most massive neutral hydrogen supershells. Thus, an additional energy source to the multiple supernovae explosions is required in order to explain the origin of the most massive neutral hydrogen shells.
        4,000원
        3.
        2004.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        High-velocity clouds are flows of neutral hydrogen, located at high galactic latitudes, with large velocities ([VLSR]≥ 100 km/s) that do not match a simple model of circular rotation for our Galaxy. Numerical simulations have been performed for the last 20 years to study the details of their evolution, and their possible interaction with the Galactic disk. Here we present a brief review of the models that have been already published, and describe newly performed three-dimensional magnetohydrodynamic simulations.
        3,000원
        4.
        2001.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Here were continue the MHD study started by Santillan et al (1999) for the interaction of high-velocity clouds (HVCs) with the magnetized thick gaseous disk of our Galaxy. We use the MHD code ZEUS-3D and perform 3D-numerical simulations of this interaction, and study the formation of head-tail structures in HVCs. Our results show that clouds located above 2 kpc from mindplane present velocity and column density gradients with a cometary structure that is similar to those observed in 21 cm emission
        3,000원