Pasture formation and management are crucial to avoid yield reduction. This experiment aimed to examine the effects of tall fescue-centered mixed-seeding combinations on yield and vegetation changes in perennial pastures in the central region for two years, from September 2020 to October 2022. The treatments were arranged in three replications in a randomized block design: control (C), tall fescue-based mixture-1 (T-1), and tall fescue-based mixture-2 (T-2). The tall fescue (TF), orchard grass (OG), perennial ryegrass (PRG), Kentucky bluegrass (KBG), and white clover (WC) were used. The emergency rate of grasses (70.0 to 73.3%) did not differ among mixed seeding combinations. Overwintering rates (81.7 to 83.3%) were similar among treatments. The plant height of grasses was similar at each harvest date, with the highest height (86.2 cm) recorded in the second harvest of the first year, followed by that (58.4 cm) in the third harvest of the first year; it was least (38.9 cm) in the fourth harvest of the second year. There was no significant difference in the dry matter yield of grasses among the mixed seeding combination treatments in the first, third, or fourth harvests of the first year (p>0.05). For second-year grasses, dry matter yield was not significantly different in harvest date among the treatments (p>0.05). Based on mixed seeding ratio, orchard grass showed the highest yield at 70% in the C treatment, followed by tall fescue at 80% and 60% in the T-1 and T-2 treatments, respectively, in the first harvest after seeding. There was no significant difference in feed value between treatments (p>0.05), but a significant difference was observed between the third and fourth harvest (p<0.05). Therefore, it indicated that it is important to create perennial pastures in the central region through mixed seeding combinations centered on tall fescue.
In the production of zirconium cladding tube, a pickling acid solution is used to remove surface contaminants, which generates tons of pickling acid waste. The waste pickling solution is a valuable resource of Hf-free Zr. Many studies have investigated separating the Hf-free Zr source from the waste pickling acid. The results showed that Ba2ZrF8 precipitates prepared from the waste pickling acid were useful as an electrolyte for the electrorefining of Zr in molten salt. In the present work, electrorefining was performed in a Ba2ZrF8-LiF binary electrolyte to recover Zr from a Hf-free CuZr ingot anode prepared by electroreduction. Before electrorefining, two pretreatments are performed. First, electrolyte melting was carried out to determine the eutectic temperature, and second, the electrolyte was treated to eliminate impurities, mainly hydride. After electrorefining, the cathode deposits were analyzed by O2 gas analyzer and SEM-EDX to explore the possibility of recovering nuclear-grade Zr metal. Moreover, the anode was analyzed by SEM-EDX to determine the Zr dissolution depth.
Zirconium(Zr) nuclear fuel cladding tubes are made using a three-time pilgering and annealing process. In order to remove the oxidized layer and impurities on the surface of the tube, a pickling process is required. Zr is dissolved in HF and HNO3 mixed acid during the process and pickling waste acid, including dissolved Zr, is totally discarded after being neutralized. In this study, the waste acid was recycled by adding BaF2, which reacted with the Zr ion involved in the waste acid; Ba2ZrF8 was subsequently precipitated due to its low solubility in water. It is very difficult to extract zirconium from the as-recovered Ba2ZrF8 because its melting temperature is 1031 oC. Hence, we tried to recover Zr using an electrowinning process with a low temperature molten salt compound that was fabricated by adding ZrF4 to Ba2ZrF8 to decrease the melting point. Change of the Zr redox potential was observed using cyclic voltammetry; the voltage change of the cell was observed by polarization and chronopotentiometry. The structure of the electrodeposited Zr was analyzed and the electrodeposition characteristics were also evaluated.