To determine the effect of diabetes on root resorption in periodontitis, we investigated odontoclast formation and root resorption in diabetic rats with periodontitis. Odontoclast formation was observed in three groups of F344 rats: Controls (C) were normal rats without diabetes or periodontitis; the periodontitis (P) group had mandibular first molars to be ligatured; the periodontitis with diabetes (PD) group was intravenously administered streptozotocin (50 mg/kg) to induce diabetes and had mandibular first molars to be ligatured. On days 3, 10, and 20 after ligature, tumor necrosis factor (TNF)-α and receptor activator of nuclear factor-κB ligand (RANKL) expression, odontoclast formation, and root resorption areas were evaluated by immunohistochemistry, tartrate-resistant acid phosphatase staining, and hematoxylin and eosin staining, respectively. The PD group showed frequent urination, weight loss, and hyperglycemia. Numbers of TNF-α- and RANKL-positive cells were higher in the P and PD groups than in the C group. It was more prevalent in PD group on day 3. Odontoclast formation was greater in the P and PD groups than in the C group on days 3 and 10, then decreased to same level as the C group by day 20. Root resorption in the PD and P groups showed increases on days 3 and 10, respectively, compared to the C group. These results suggest that diabetes may transiently increase root resorption on day 3 with high expression of TNF-α and RANKL after periodontitis induction. This study could aid the understanding of root resorption in diabetic patients with periodontitis.
Leptin is one of the adipocytokines produced from adi- pose tissue but its functions in periodontal tissue have not previously been investigated. In our current study, we exa- mined the effects of leptin on the expression of interleukin (IL)-6 and IL-8 in periodontal ligament (PDL) cells and gingival fibroblasts. Leptin receptor expression was evalua- ted by RT-PCR and the production of cytokines was mea- sured by ELISA. The phosphorylation of Akt and Erk1/2 was assessed by western blotting. mRNA of long and short form leptin receptors were detected in both PDL cells and gingival fibroblasts. Leptin was found to increase the pro- duction of IL-6 and IL-8 in both of these cell types, an effect which was not blocked by polymyxin B, an inhibitor of lipopolysaccharide (LPS). Leptin did not alter the pro- duction of IL-6 and IL-8 induced by LPS in PDL cells but increased Akt and Erk1/2 phosphorylation in these cells. These results suggest that leptin acts as an inducer of IL-6 and IL-8 in PDL cells and gingival fibroblasts.
It has been documented that SPA0355 exerts anti-inflammatory effects via the inhibition of nuclear factor¬kappaB activation. In present study, we investigated the inhibitory effects of SPA0355 on periodontitis in an animal model. Periodontitis was induced by ligation of the cervix of the 1st molar in the left mandible in rats. After ligature, the rats were randomly divided into four groups and topically applied with SPA0355 (0.5, 1, and 2%) or the vehicle alone once daily for 10 days. Body weight and food intake were measured daily throughout the experimental period. At day 10 post-ligature, the infiltration of inflammatory cells and distance of the cementoenamel junction (CEJ) to the alveolar bone crest (ABC) in the distal area of ligatured tooth were estimated histopathologically. No changes in body weight or food intake were found between the control and SPA0355 groups. The degree of inflammation was decreased in all three SPA0355 application groups. A decrease CEJ-ABC distance was observed in the 0.5% and 1% SPA0355 groups. These results indicate that SPA0355 inhibits the infiltration of inflammatory cells and alveolar bone resorption and suggests its potential as a therapeutic agent for periodontitis.