검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2023.11 구독 인증기관·개인회원 무료
        This study explores the impact of metal doping on the surface structure of spent nuclear fuels (SNFs), particularly uranium dioxide (UO2). SNFs undergo significant microstructural changes during irradiation, affecting their physical and chemical properties. Certain elements, including actinides and lanthanides, can integrate into the UO2 lattice, leading to non-stoichiometry based on their oxidation state and environmental conditions. These modifications are closely linked to phenomena like corrosion and oxidation of UO2, making it essential to thoroughly characterize SNFs influenced by specific element doping for disposal or interim storage decisions. The research employs X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy to investigate the surface structure of UO2 samples doped with elements such as Nd3+, Gd3+, Zr4+, Th4+, and ε-particles (Mo, Ru, Pd). To manufacture these samples, UO2 powders are mixed and pelletized with the respective dopant oxide powders. The resulting pellet samples are sintered under specific conditions. The XRD analysis reveals that the lattice parameters of (U,Nd)O2, (U,Gd)O2, (U,Zr)O2, and (U,Th)O2 linearly vary with increasing doping levels, suggesting the formation of solid solutions. SEM images show that the grain size decreases with higher doping levels in (U,Gd)O2, (U,Nd)O2, and (U,Zr)O2, while the change is less pronounced in (U,Th)O2. Raman spectroscopy uncovers that U0.9Gd0.1O2-x and U0.9Nd0.1O2-x exhibit defect structures related to oxygen vacancies, induced by trivalent elements replacing U4+, distorting the UO2 lattice. In contrast, U0.9Zr0.1O2 shows no oxygen vacancy-related defects but features a distinct peak, likely indicating the formation of a ZrO8-type complex within the UO2 lattice. ε-Particle doped uranium dioxide shows minimal deviations in surface properties compared to pure UO2. This structural characterization of metal-doped and ε-particle-doped UO2 enhances our understanding of spent nuclear fuel behavior, with implications for the characterization of radioactive materials. This research provides valuable insights into how specific element doping affects the properties of SNFs, which is crucial for managing and disposing of these materials safely.
        2.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Elastic and non-elastic taping are widely used in clinical practice, but there are various methods of attachment. Objectives: To investigate the effect of the type and intensity of taping on the muscle strength and muscle endurance of healthy adults. Design: Experimental research. Methods: 38 healthy adults participated in this experiment. Before applying the taping to each participant, the muscle strength and endurance of the quadriceps femoris were measured. After applying three different taping intervention methods, muscle strength and muscle endurance changes were measured. Muscle strength and endurance were measured through CSMI. Repeated measures ANOVA was used for statistics on participant measurements. Results: All intervention methods influenced the muscle strength improvement of the quadriceps femoris. Elastic tape with 50% elasticity had a greater impact on muscle strength than 33% elastic tape and non-elastic tape, and secondly, elastic tape with 33% elasticity was effective, and non-elastic tape had the least impact. Muscle endurance improvement was affected by the order of 50% elasticity taping, 33% elasticity taping, and non-elastic taping. Conclusion: All three taping intervention methods showed significant effects on improving muscle strength and muscle endurance of the wide-legged quadruple muscles, but the best effect was to apply 50% elastic taping.
        4,000원
        3.
        2022.05 구독 인증기관·개인회원 무료
        Spent nuclear fuel is a very complex material because various elements such as fission products, transuranium elements and activation products are produced from initial fresh UO2 fuel after irradiation. These elements exist in UO2 with various forms and can change the structure and of physicochemical properties of UO2. These changes could provide the surface activation site that could enhance chemical reactions and corrosion processes, and would significantly affect the storage environment for long-term disposal of spent nuclear fuel. Therefore, it can be important to understand the characteristics of spent nuclear fuel to design reliable and safe geological repositories. However, it is too hard to study the characteristics of spent nuclear fuel, because it is a very complex material by itself and not easy to handle due to its radioactivity, and it is also difficult to independently understand the effects of each element. Therefore, a simulated spent nuclear fuel containing an element that forms a solid solution and epsilon particle was manufactured to understand the change in characteristics of each element. Most of the elements that form solid solutions are lanthanides or actinides and can change the structure of the UO2 lattice itself. The epsilon particles exist as metals at the grain boundaries of UO2. In this study, structural changes were measured using XRD, SEM, and Raman spectroscopy, and physical and chemical properties were also identified by measuring electrical conductivity and electrochemical properties. The results were summarized, and the effects of solid solution elements and epsilon particles on the structure and properties of UO2 matrix were compared and discussed.