SiC is a material with excellent strength, heat resistance, and corrosion resistance. It is generally used as a material for SiC invertors, semiconductor susceptors, edge rings, MOCVD susceptors, and mechanical bearings. Recently, SiC single crystals for LED are expected to be a new market application. In addition, SiC is also used as a heating element applied directly to electrical energy. Research in this study has focused on the manufacture of heating elements that can raise the temperature in a short time by irradiating SiC-I2 with microwaves with polarization difference, instead of applying electric energy directly to increase the convenience and efficiency. In this experiment, Polydimethylsilane (PDMS) with 1,2 wt% of iodine is synthesized under high temperature and pressure using an autoclave. The synthesized Polycarbosilane (PCS) is heat treated in an argon gas atmosphere after curing process. The experimental results obtain resonance peaks using FT-IR and UV-Visible, and the crystal structure is measured by XRD. Also, the heat-generating characteristics are determined in the frequency band of 2.45 GHz after heat treatment in an air atmosphere furnace.
Two dimensional(2D) crystals, composed of a single layer or a few atomic layers extracted from layered materials are attracting researchers’ interest due to promising applications in the nanoelectromechanical systems. Worldwide researchers are preparing devices with suspended 2D materials to study their physical and electrical properties. However, during the fabrication process of 2D flakes on a target substrate, contamination occurs, which makes the measurement data less reliable. We propose a dry transfer method using poly-methyl methacrylate(PMMA) for the 2D flakes to transfer onto the targeted substrate. The PMMA is then removed from the device by an N-Methyl-2-pyrrolidone solution and a critical point dryer, which makes the suspended 2D flakes residue free. Our method provides a clean, reliable and controllable way of fabricating micrometer-sized suspended 2D nanosheets.