Sympathetic innervation stimulates β-adrenergic receptors, triggering cyclic adenosine monophosphate (cAMP) production and enhancing protein secretion in salivary gland cells. While cAMP signaling, in conjunction with Ca2+ signaling, is essential for salivary gland function, the identified cAMP-producing G-protein-coupled receptors (GPCRs) remains limited. Here, we report the presence of cAMP-producing adenosine receptors in salivary gland cells. By reanalyzing publicly available single-cell transcriptome datasets of human and mouse submandibular glands, we identified mRNA expression of adenosine A1, A2A, A2B, and A3 receptors. Additionally, we confirmed that 5’-N-ethylcarboxamidoadenosine (NECA), an adenosine A2B receptor agonist, increases cAMP levels in human salivary gland cells, suggesting a physiological role for adenosine A2B receptors. Our findings enhance understanding of adenosine’s regulatory function in salivary glands and highlight new avenues for research on cAMPproducing adenosine receptors.
Cytosolic Ca2+ is an important regulator of tumor cell proliferation and metastasis. Recently, the strategy of blocking receptors and channels specific to certain cancer cell types has emerged as a potentially viable future treatment. Oral squamous cell carcinoma is an aggressive form of cancer with a high metastasis rate but the receptor-mechanisms involved in Ca2+ signaling in these tumors have not yet been elucidated. In our present study, we report that bradykinin induces Ca2+ signaling and its modulation in the human oral squamous carcinoma cell line, HSC-3. Bradykinin was found to increase the cytosolic Ca2+ levels in a concentration-dependent manner. This increase was inhibited by pretreatment with the phospholipase C-β inhibitor, U73122, and also by 2-aminoethoxydiphenyl borate, an inhibitor of the inositol 1,4,5-trisphosphate receptor. Pretreatment with extracellular ATP also inhibited the peak bradykinin-induced Ca2+ rise. In contrast, the ATP-induced rise in cytosolic Ca2+ was not affected by pretreatment with bradykinin. Pretreatment of the cells with either forskolin or phorbol 12-myristate 13-acetate (activators of adenylyl cyclase and protein kinase C, respectively) prior to bradykinin application accelerated the recovery of cytosolic Ca2+ to baseline levels. These data suggest that bradykinin receptors are functional in Ca2+ signaling in HSC-3 cells and may therefore represent a future target in treatment strategies for human oral squamous cell carcinoma.