The oral care probiotic strain Weissella cibaria CMU (oraCMU) inhibits volatile sulphur compounds associated with halitosis, presumably by inhibiting the growth of associated oral pathogens. In the present study, we investigated whether oraCMU inhibits the production of these compounds by suppressing the expression of mgl . This gene encodes L-methionine-α-deamino-γ-mercaptomethane-lyase (METase) and is involved in the production of methyl mercaptan (CH3SH) by Porphyromonas gingivalis . Therefore, we specifically investigated the effects of oraCMU on the growth, CH3SH production, METase activity, and mgl expression of P. gingivalis . The minimum inhibitory concentrations of cell-free supernatant and secreted proteins from oraCMU were 125 mg/mL and 800 µg/mL, respectively. At sub-minimum inhibitory concentration levels, these metabolites inhibited CH3SH production, but they also reduced P. gingivalis viability. Only heat-killed oraCMU decreased CH3SH production without affecting P. gingivalis viability. Heat-killed oraCMU also inhibited METase activity toward L-methionine and mgl mRNA expression (p < 0.05). In summary, we demonstrated the inhibition of volatile sulphur compounds via the antimicrobial action of oraCMU and, for the first time, the inhibition of such compounds by heat-killed oraCMU, which occurred at the molecular level.
The purpose of this study is to determine if natural extracts could be used as an additive in oral health food made with Weissella cibaria CMU (oraCMU). Natural extracts of green tea, mulberry leaf, licorice, and propolis, which are reported to have antimicrobial activities, were selected and used in this study. The minimum inhibitory concentrations (MIC) of extracts on periodontal pathogens such as Fusobacterium nucleatum and Porphyromonas gingivalis and their synergy effects with oraCMU by the fractional inhibitory concentrations methods were measured. From the results obtained, all the extracts showed no effect on the growth of oraCMU. Green tea extract showed the best antibacterial activity with MIC of 1.8 mg/ml against both F. nucleatum and P. gingivalis. In addition, green tea extract had a synergistic effect with oraCMU against F. nucleatum. Therefore, these results suggested that green tea extract is available as an additive in oral health food made with oraCMU.