검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2011.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ultrasonography (US) is a recent technique that has proven to be useful for assessing muscle thickness and guiding the rehabilitation decision-making of clinicians and researchers. The purpose of this study was to determine the inter-rater reliability of the US measurement of transversus abdominis (TrA), internal oblique (IO), and external oblique (EO) thicknesses for different probe locations and measurement techniques. Twenty healthy volunteers were recruited in this study. Muscle thicknesses of the transversus TrA, IO, and EO were measured three times in the hook-lying position. The three different probe locations were as follows: 1) Probe location 1 (PL1) was below the rib cage in direct vertical alignment with the anterior superior iliac spine (ASIS). 2) Probe location 2 (PL2) was halfway between the ASIS and the ribcage along the mid-axillary line. 3) Probe location 3 (PL3) was halfway between the iliac crest and the inferior angle of the rib cage, with adjustment to ensure the medial edge of the TrA. The two different techniques of thickness measurement from the captured images were as follows: 1) Muscle thickness was measured in the middle of the muscle belly, which was centered within the captured image (technique A; TA). 2) Muscle thickness was measured along a horizontal reference line located 2 cm apart from the medial edge of the TrA in the captured image (technique B; TB). The intraclass correlation coefficient (ICC [3,k]) was used to calculate the inter-rater reliability of the thickness measurement of TrA, IO and EO using the values from both the first and second examiner. In all three muscles, moderate to excellent reliability was found for all conditions (probe locations and measurement techniques) (ICC=.70~.97). In the PL1-TA condition, inter-rater reliability in the three muscle thicknesses was good to excellent (ICC=.85~.96). The reliability of all measurement conditions was excellent in IO (ICC=.95~.97). Therefore, the findings of this study suggest that TA can be applied to PL1 by clinicians and researchers in order to measure the thickness of abdominal muscles.
        4,000원
        2.
        2011.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Foot posture is important in the development of the musculoskeletal structure in the lower limbs because it can change the mechanical alignment. Although foot orthotics are widely used for the correction of malalignments in the lower extremities, the biomechanical effects of wedges have not yet been cleared. The aim of this study was to investigate whether medial wedges affect the electromyographic (EMG) activity of the knee and hip joints in healthy adults that are performing one leg standing. Seventeen healthy volunteers performed the one leg standing under two foot conditions: A level surface, and a medial wedge. The subjects' EMG data for the gluteus maximus (Gmax), gluteus medius (Gmed), tensor fasciae latae (TFL), biceps femoris (BF), vastus lateralis (VL), and vastus medialis oblique (VMO) were recorded, along with the surface EMG, and all were analyzed. The EMG activity of the Gmed and TFL had significantly decreased under the medial wedge condition during one leg standing. Further study is needed in order to investigate whether medial wedges influence the EMG activity and kinematic data of the knee and hip joints as well as the ankle joints in adults with flexible flatfoot, while they are performing one leg standing.
        4,000원
        3.
        2011.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to identify the effects of manual facilitation and a stick on lumbar and hip joint flexion angles in subject with lumbar flexion syndrome during forward bending from a sitting position. Fifteen subjects with lumbar flexion syndrome were recruited for this study. As a pretest, all subjects performed three repetitions of bending the trunk forward until the tips of their fingers touched the target bar. After this pretest, the subjects practiced the forward bending of the trunk 10 times, using either manual facilitation or a stick. Then, as a posttest, all subjects repeated the pretest procedure. The flexion angles of lumbar spine and hip joint during forward bending in a sitting position were measured using a three-dimensional motion analysis system. A paired t-test was used to determine the statistical differences between pre-test and post-test flexion angles and pre- and post-test flexion angle differences between forward bending with manual facilitation and forward bending with a stick. The level of statistical significance was set at p=.05. The results of the study showed that the angle of the lumbar flexion decreased significantly and the bilateral hip flexion angle increased significantly when performing forward bending with stick and manual facilitation. Furthermore, the angle of lumbar flexion decreased significantly and the angle of bilateral hip flexion increased significantly in forward bending with a stick compared to forward bending with manual facilitation. The findings of this study indicate that both forward bending with manual facilitation and sticks could be used to prevent excessive lumbar flexion and increase hip flexion, and that forward bending with a stick is more effective than forward bending with manual facilitation for inducing lumbar spine and hip joint angle changes.
        4,000원