검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigated the effects of exposure frequency, depth of processing, and activity repetition types on vocabulary learning. In total, 78 South Korean fifth-grade students were divided into four conditions. Students in each condition were asked to read a passage with four of the eight target words (exposure: four times) and the other four words (exposure: once) for three days, and to perform the vocabulary activities assigned to each condition. According to the results, exposure frequency and activity repetition type had significant effects on vocabulary learning. Activity repetition type also had a significant interaction effect with exposure frequency and depth of processing. Notably, presenting a word 12 times (4x3) in reading intervals had a more positive impact on vocabulary learning than presenting it three times (1x3), particularly when different vocabulary activities were repeated. Meanwhile, when the same activity was repeated, an activity with a higher depth of processing was more effective for vocabulary learning.
        7,000원
        2.
        2023.11 구독 인증기관·개인회원 무료
        The compacted bentonite buffer is a key component of the engineered barrier system in deep geological repositories for high-level radioactive waste disposal. Groundwater infiltration into the deep geological repository leads to the saturation of the bentonite buffer. Bentonite saturation results in bentonite swelling, gelation and intrusion into the nearby rock discontinuities within the excavation damaged zone of the adjacent rock mass. Groundwater flow can result in the erosion and transport of bentonite colloids, resulting in bentonite mass loss which can negatively impact the long-term integrity and safety of the overall engineered barrier system. The hydro -mechanicalchemical interactions between the buffer, surrounding host rock and groundwater influence the erosion characteristics of the bentonite buffer. Hence, assessing the critical hydro-mechanicalchemical factors that negatively affect bentonite erosion is crucial for the safety design of the deep geological repository. In this study, the effects of initial bentonite density, aperture, discontinuity angle and groundwater chemistry on the erosion characteristics of Bentonil WRK are investigated via bentonite extrusion and artificial fracture experiments. Both experiments examine bentonite swelling and intrusion into simulated rock discontinuities; cylindrical holes for bentonite extrusion experiments and plane surfaces for artificial fracture experiments. Compacted bentonite blocks and bentonite pellets are manufactured using a compaction press and granulation compactor respectively and installed in the transparent extrusion cells and artificial fracture cells. The reference test condition is set to be 1.6 g/cm3 dry density and saturation using distilled water. After distilled water or solution injection, the axial and radial expansion of the bentonite specimens into the simulated rock discontinuities are monitored for one month under free swelling conditions with no groundwater flow. Subsequent flow tests are conducted using the artificial fracture cell to determine the critical flow rate for bentonite erosion. The intrusion and erosion characteristics are modelled using a modified hydro-mechanicalchemical coupled dynamic bentonite diffusion model and a fluid-based hydro-mechanical penetration model.
        4.
        2022.10 구독 인증기관·개인회원 무료
        Compacted bentonite buffer materials are a key component of the engineered barrier system for high-level radioactive waste disposal. The bentonite buffer is saturated via groundwater flow through the excavation damaged zone in the adjacent rock mass. Bentonite saturation results in bentonite swelling, gelation and intrusion into the nearby rock discontinuities. Groundwater flow can cause bentonite erosion and transportation of bentonite colloids. This bentonite mass loss can negatively impact the long-term integrity of the engineered barrier system. Hence, it is necessary to understand the effects of erosion on the properties of the bentonite buffer. In this study, a series of artificial fracture erosion experiments are conducted to investigate the erosion characteristics of compacted Ca-bentonite buffer materials for different initial dry density conditions. Compacted bentonite blocks and bentonite pellets were manufactured using the cold isostatic pressing technique and granulation compactor respectively. The specimens were placed in a custommade transparent artificial fracture cell and the bentonite intrusion characteristics were monitored for two months under free swelling conditions with no groundwater flow. The radial expansion of the bentonite specimens within the artificial fracture was measured using a digital camera. In addition, the swelling pressure, displacement, and saturation were determined using a load cell-piston system, LVDT, and electrical resistivity electrodes respectively. A hydro-mechanical-chemical coupled dynamic bentonite diffusion model was applied to model the bentonite erosion characteristics using COMSOL Multiphysics.
        5.
        2022.05 구독 인증기관·개인회원 무료
        Low to intermediate radioactive waste disposal concrete structures are subjected to coupled hydromechanical conditions and the identification of structural damage is crucial to ensure safe long-term disposal. Different damage models for concrete and the surrounding rock can affect the damage characteristics of radioactive waste disposal structures. In this study, the effects of different rock damage models are applied to the hydro-mechanical-damage coupled structural analysis of the Wolseong Low and Intermediate Level Radioactive Waste Disposal Center silo. A two-dimensional model of the disposal silo was modeled using the finite element analysis software COMSOL and the Mazars’ damage model was applied to the silo concrete. The Mazars’ model parameters were obtained from uniaxial compression and tensile tests on cylindrical concrete specimens after 28 days of water curing and further 32 days of wet curing at 75°C). The COMSOL embedded Richards equation module was used to simulate hydraulic analysis. Structural loading due to waste disposal was applied at the bottom of the silo structure and the damage evolution characteristics were investigated. The non-linear mechanical rock behavior obtained from laboratory tests (Hoek-Brown criterion, resonant column test, Mazar’s damage model) and field tests (Goodman Jack) were input to assess the effects of different rock damage models. The results highlight the importance of structural damage consideration when assessing the long-term stability and safety of underground radioactive waste disposal structures under coupled hydro-mechanical conditions.
        10.
        2015.06 구독 인증기관 무료, 개인회원 유료
        Curcumin (diferuloylmethane), a constituent of turmeric powder derived from the rhizome of Curcuma longa, has been shown to inhibit the growth of various types of cancer cells by regulating cell proliferation and apoptosis. However, a need exists to design more effective analogs because of curcumin's poor intestinal absorption. EF-24 (diphenyl difluoroketone), the monoketone analog of curcumin, has shown good efficacy in anticancer screens. However, the effects of curcumin and EF-24 on salivary gland epidermoid carcinoma cells are not clearly established. The main goal of this study was to investigate the effects of curcumin and EF-24 on cell growth and induction of apoptosis in human salivary gland epidermoid carcinoma cells. Our studies showed that curcumin and EF-24 inhibited the growth of HTB-41 cells in a dose- and time-dependent manner, and the potency of EF-24 was > 34-fold that of curcumin. Treatment with curcumin or EF-24 resulted in nuclear condensation and fragmentation in HTB-41 cells, whereas the control HTB-41 cell nuclei retained their normal regular and oval shape. Curcumin and EF-24 promoted proteolytic cleavages of procaspase-3/-7/-9, resulting in an increase in the amount of cleaved caspase-3/-7/-9 in the HTB-41 cells. Caspase-3 and -7 activities were detected in viable HTB-41 cells treated with curcumin or EF-24. These results suggest that the curcumin and EF-24 inhibit cell proliferation and induce apoptosis in HTB-41 human salivary gland epidermoid carcinoma cells, and that they may have potential properties as an anti-cancer drug therapy.
        4,000원
        11.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to assess the influence of the duration of smartphone usage on cervical and lumbar spine flexion angles and reposition error in the cervical spine. The study included 18 healthy smartphone users (7 males and 11 females). We measured the kinematics of the upper and lower cervical and lumbar spine flexion angles and the reposition error of the upper and lower cervical spine after 3 s and 300 s smartphone use in sitting. A paired t-test was used to compare the effects of the duration of smartphone usage on the kinematics of cervical and lumbar spine flexion angles and reposition error. The flexion angles of the lower cervical and lumbar spine and the reposition error in the upper and lower cervical spine were significantly increased after 300 s smartphone of use (p<.05). However, the flexion angle of the upper cervical spine was not significantly different between the 3 s and 300 s smartphone of use (p>.05). These findings suggest that prolonged use of smartphones can induce changes in cervical and lumbar spine posture and proprioception in the cervical spine.
        4,000원
        12.
        2012.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to assess the influence of patellar height on quadriceps muscles' electromyography (EMG) activity during a squat exercise in adults with patella baja. For the study, we recruited 15 volunteers who had patella baja on the right side. We measured the EMG activity of the right rectus femoris, vastus medialis oblique, and vastus lateralis muscles during squat exercises under two conditions, specifically with and without an infra-patellar strap. The infra-patellar strap was applied below the tested patella to elevate the patella to a normal height. A paired t-test was used to compare the effects of patella height on EMG activity of the quadriceps muscles. The EMG activity of the rectus femoris (RF), vastus medialis oblique (VMO), and vastus lateralis (VL) muscles were significantly decreased during the squat exercise with the infra-patellar strap compared to the same exercise without the infra-patellar strap (p<.05), while the VMO/VL ratio was not different significantly between two conditions (p>.05). The findings of this study suggest that an infra-patellar strap may benefit people with patellar baja, as changes in patellar height could improve the efficiency of the quadriceps muscles.
        4,000원
        13.
        2005.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to define more precisely the anatomy of the thumb flexor pulley system and to determine the relative contribution of each of the pulleys to the biomechanics of thumb motion at the metacarpophalangeal (MP) and interphalangeal (IP) joints. For this, 22 hands from 11 cadavers were used and randomly assigned to two groups. In the first group, the first annular (A1) pulley was cut first followed by the variable annular (Av) pulley and then the oblique pulley. In the second group, the oblique pulley was cut first followed by the, pulley and then the Av pulley. In 7 of 22 hands, it was a transverse structure parallel to the, pulley with a gap between the A1 and Av pulleys, referred to here as type I. In 9 hands, the A1 and Av pulleys were connected without any gap (type II). In 6 hands, the space between the A1 and Av pulleys were triangular in shape with fibers of the Av pulley converging toward the radial side (type III). In biomechanical study of both first and second experiments, there was no significant difference in MCP joint flexion between the all intact, A1 section, A1/Av section, A2 intact (A1/Av/oblique section), and no pulley configuration (p>.05). In occurring displacements less than 10 mm, there was no significant difference in IP joint flexion (p>.05). However, there was a significant decrease in IP joint flexion occurred in both 15 mm and 20 mm excursion (p<.05), when the oblique pulley was resected additionally after cutting the A1 and Av pulleys in first experiment, and when the A1 pulley was resected additionally after cutting the oblique pulley. According to the results, the injury of only the oblique pulley does not decrease thumb motion significantly. The oblique pulley injury with both the A1 and Av pulleys laceration decreased thumb motion significantly. The additional laceration of the A2 pulley does not decrease thumb motion.
        4,000원