A safety assessment of radioactive waste repositories is a mandatory requirement process because there are possible radiological hazards owing to radionuclide migration from radioactive waste to the biosphere. For a reliable safety assessment, it is important to establish a parameter database that reflects the site-specific characteristics of the disposal facility and repository site. From this perspective, solubility, a major geochemical parameter, has been chosen as an important parameter for modeling the migration behavior of radionuclides. The solubilities were derived for Am, Ni, Tc, and U, which were major radionuclides in this study, and on-site groundwater data reflecting the operational conditions of the Gyeongju low and intermediate level radioactive waste (LILW) repository were applied to reflect the site-specific characteristics. The radiation dose was derived by applying the solubility and radionuclide inventory data to the RESRAD-OFFSITE code, and sensitivity analysis of the dose according to the solubility variation was performed. As a result, owing to the low amount of radionuclide inventory, the dose variation was insignificant. The derived solubility can be used as the main input data for the safety assessment of the Gyeongju LILW repository in the future.
Site characterization for decommissioning Kori Unit 1 is ongoing in South Korea after 40 years of successful operation. Kori Unit 1’s containment building is assumed to be mostly radioactively contaminated, and therefore radiation exposure management and detailed contamination investigation are required for decommissioning and dismantling it safely. In this study, site-specific Derived Concentration Guideline Levels (DCGLs) were derived using the residual radioactivity risk evaluation tool, RESRAD-BUILD code. A conceptual model of containment building for Kori Unit 1 was set up and limited occupational worker building inspection scenario was applied. Depending on the source location, the maximum contribution source and exposure pathway of each radionuclide were analyzed. The contribution of radionuclides to dose and exposure pathways, by source location, is expected to serve as basic data in the assessment criteria of survey areas and classification of impact areas during further decommissioning and decontamination of sites.
대한민국 첫 상업원전인 고리1호기는 40년간의 성공적인 운전을 끝내고 2017년 6월 18일 영구정지 되었다. 고리1호기는 본격적인 해체에 앞서 터빈건물에 폐기물처리시설 건설을 계획하고 있다. 각종 방사성폐기물은 폐기물처리시설에서 제염, 해체, 절단, 용융되어 자체처분 되거나 방사성폐기물 처분장으로 보내 진다. 해체폐기물 중 대형금속방사성폐기물은 주로 1차 계통측 기기들로 높은 방사능을 띄고 있어 해체활동 중 작업자의 피폭관리가 필요하다. 본 논문에서는 대형금속방사성폐기물 중 크기가 가장 크고 형상이 복잡한 증기발생기를 선정하여 RESRAD-RECYCLE 코드를 이용하여 작업자 피폭선량을 평가하고 저감화 방안을 수립 하고자 한다.