검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,562

        1.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Silage inoculants, crucial in modern silage production, comprise beneficial microorganisms, primarily lactic acid bacteria (LAB), strategically applied to forage material during ensiling. This study aimed to compare the effectiveness of various inoculants produced by different companies. Five treatments were evaluated, including a control group: T1 (Lactobacillus plantarum), T2 (Lactobacillus plantarum + Pediococcus pentosaceus), T3 (Lactobacillus plantarum + Pediococcus pentosaceus + Lactobacillus buchneri), T4 (Lactobacillus plantarum + Lactobacillus acidophilus + Lactobacillus bulgaricus), and T5 (Lactobacillus plantarum + Pediococcus pentosaceus + Enterococcus faecium). Italian ryegrass was harvested at the heading stage and treated with these silage inoculants. Samples were collected over a 60-day ensiling period. Co-inoculation with L. plantarum and P. pentosaceus (T2) resulted in significantly higher CP compared to the control group co-inoculation exhibited with resulted in Lactobacillus plantarum and Pediococcus pentosaceus in the T2 treatment exhibited higher CP content of 106.35 g/kg dry matter (DM). The T3 treatment, which included heterofermentative bacterial strains such as Lactobacillus buchneri, exhibited an increase in acetic acid concentration (11.15 g/kg DM). In the T4 treatment group, which utilized a mixed culture of Lactobacillus acidophilus and Lactobacillus bulgaricus, the NH3-N/TN content was observed to be the lowest (20.52 g/kg DM). The T5 containing Enterococcus faecium had the highest RFV (123) after 60 days. Expanding upon these findings, the study underscores not only the beneficial effects of particular inoculant treatments on silage quality but also underscores the potential of customized inoculation strategies in maximizing nutrient retention and overall silage preservation.
        4,000원
        2.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 민간시장의 절화 유통 현황을 조사하여 국내 절 화 시장 유통 및 판매의 기초 자료로 제공하고자 수행하였다. 조사 기간은 2022년 5월부터 10월까지이며, 민간시장 내 판 매 점포 수, 취급 품목, 수입국 및 품목 등을 비교 및 분석하 였다. 민간시장은 서울 서초구 반포동에 위치한 강남터미널 꽃시장을 대상으로 판매 품목 및 수입 국가 등을 조사하였고, 비교 대상인 공영시장의 경우 한국농수산식품유통공사 화훼 유통정보에서 제공되는 양재동 화훼공판장 거래 품목을 조사 하였다. 조사 결과, 민간시장의 월별 절화 판매 점포 수는 평 균 143개였다. 민간시장에서는 5월을 제외하고 장미 판매 매 장이 가장 많았다. 5월에는 카네이션 판매 매장이 가장 많았 으며 장미, 리시안셔스, 거베라가 그 뒤를 이었다. 민간시장 점포 내 수입 품목의 원산지는 호주, 중국, 콜롬비아, 이스라 엘, 이탈리아, 일본, 네덜란드, 페루, 남아프리카 공화국, 미 국, 베트남 등으로 조사되었다. 취급 품목은 민간시장이 69개 로 공영시장 18개에 비해 약 3.8배 많았으며, 이는 민간시장에서 수입 절화가 더 많이 유통되고 있음을 시사한다. 민간시 장은 공영시장과 달리 유통 정보를 알 수 있는 시스템이 없어 소비자들이 제품의 원산지, 품질, 가격 등을 파악하기 어렵다. 따라서, 민간시장의 절화 유통 정보를 소비자들에게 정확히 제공할 필요가 있으며, 이를 통한 투명한 거래 제공 및 소비자 의 신뢰도를 높이는 것이 중요하다.
        4,300원
        3.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study evaluated the risk of single and combined exposure to microplastics in zebrafish (Danio rerio) through biomarkers, such as survival rate, excretion rate, and histological alterations of organ systems. The experimental groups were the control (Cont.), single microplastics exposure group (MPs, 1.83%/fish total weight (g)), the copper group (Cu, 21.6 μg L-1), and a group with combined exposure to MPs and copper (MPs*Cu). The experiment was conducted with individual exposure (7 days) for MP excretion rate analysis and group exposure (14 days) for biomarker analysis. The daily excretion rate of MPs tended to decrease in a time-dependent manner. The copper concentration in the body was not significantly different between single and combined copper exposure. The degeneration of mucous cells in the skin, capillary dilation of the gill lamella, increased intestinal mucous, hepatocyte hypertrophy, and the degeneration of glomeruli and renal tubules were observed in all exposure groups. These histological alterations showed the highest tendency in the MPs*Cu group. In this study, the changes in biomarkers were attributed to the single effect of copper or the combined effect of copper and MPs rather than being solely influenced by MPs.
        4,600원
        4.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Since rice is the main food in Korea, there are no regulations on corn milling yet. Corn is known as one of the world's top three food crops along with wheat and rice, and it is known that 3.5 billion people worldwide use corn for food. In addition, corn mills are not developed or sold in Korea, but the use of corn mills is increasing significantly in many countries in Southeast Asia. In the Philippines, as Korea's rice mill import increases, Korea's KAMICO (Korea Agricultural Machinery Industry Cooperative) and domestic company A agreed to develop a corn mill jointly with PHilMech, an organization affiliated with the Philippine Ministry of Agriculture. However, research on corn milling was very insignificant, so the development was carried out based on the technology of Korea's rice mill. Rice milling is performed by peeling off the skin of rice and producing brown or white rice, so it is carried out by removing the skin and cutting the skin. On the other hand, in the corn mill, the skin of the corn is peeled, pulverized and selected to produce main products suitable for edible use. Therefore, in order to develop a corn mill, processes such as peeling, transfer, grinding, sorting, and by-product separation are required, and suitable parts must be developed. In addition, the performance must be gradually improved through experiments in which corn is repeatedly milled. The Philippines produces 7.98 million tons/year of corn, which is about 100 times that of Korea, and is mostly consumed as a staple food. This is about 10% of the total crop production in the Philippines. In addition, the main cultivation complexes of corn are the mountainous regions of Tarlac or Pangasinan, and the produced corn is 72.4% of the so-called yellow corn called Arabel and Sarangani, and the remaining 27.6% are known as white corn. In this study, it was intended to produce grains of 2.5 mm or less suitable for food for yellow corn and to develop a corn mill for 200 kg per hour. Detailed conditions for development are stipulated as more than 55% of the main product recovery rate, more than 31% of the by-product recovery rate, less than 5% of the raw material loss rate, and more than 80% of the embryo dislocation rate. In this study, to achieve this, the overall process of the corn mill was developed, and the optimal conditions for the corn mill were obtained through the development of parts and empirical tests to improve performance. In addition, it was intended to achieve the development goal by evaluating and analyzing the performance of each part so that it did not conflict.
        4,800원
        5.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Liquid phase exfoliation of natural graphite is an industrially effective solution for graphene preparation. However, many countries have identified natural graphite as a strategic resource and restricted its mining. In this report, we used abundant and readily available needle coke (NC) as a graphene exfoliation precursor and sodium carboxymethyl cellulose (CMC) as a dispersant to prepare a sandwich structured conductive graphitized NC nanosheets (GNCNs) by liquid phase exfoliation, freeze-drying and high-temperature graphitization, in which a graphene layer is sandwiched between two thin CMC layers. CMC could increase the liquid absorption and retention ability of the conductive agent and improve the migration rate of lithium ions. The highly ordered graphene layer could accelerate the transmission of electrons. The GNCNs with 0.4 wt% CMC addition showed good rate performance (144.6 mAh g− 1 at 5 C) and high cycle stability (96.2% after 200 cycles at 1 C) for LiFePO4 (LFP) battery. The traditional Super-P (SP) conductive agent exhibited low-rate performance (113.9 mAh g− 1 at 5 C) and cycle performance (89.9% after 200 cycles at 1 C). This study offers a novel approach to selecting graphene precursors and has promising applications for conductive additives in high-performance LFP batteries.
        4,800원
        6.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The subgenus Tricoma Cobb, 1894 comprises free-living marine nematodes encompassing a total of 83 validated taxa. Within this diversity, twenty-one taxa thrive in the deep sea, while twenty-three are found in coral reefs, flat areas, or green algae. Additionally, eleven taxa inhabit the sublittoral zone at depths exceeding 10 meters, and the remaining taxa are situated on beaches, coasts, or in habitats lacking detailed information. In the course of a survey focused on the East Sea free-living marine nematodes, we identified four new and two previously unrecorded species belonging to the subgenus Tricoma. Specifically, two new species, Tricoma (Tricoma) breviseta sp. nov. and T. (T.) donghaensis sp. nov., were discovered in mud-sandy sediment in deepsea environments below 2000 meters within the Ulleung Basin and Hupo Bank. Two previously unrecorded species [T. (T.) paralucida Decraemer, 1987 and T. (T.) similis Cobb, 1912] and the two newly found species [T. (T.) longicauda sp. nov. and T. (T.) ulleungensis sp. nov.] were obtained from subtidal coarse sand at a depth of 20 meters during a survey of the waters surrounding Ulleungdo Island. The distribution and information on validated taxa within the subgenus Tricoma were systematically collected, reviewed, and cataloged. Detailed morphological features and illustrations of Tricoma species from Korea were provided through the use of differential interference contrast microscopy.
        8,700원
        7.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        산오이풀(Sanguisorba hakusanensis)은 한국의 자생식물 이며 정원소재로써 가치가 있지만, 생육 및 생리적 특성 및 정 원 적응 여부에 대하여 알려진 정보가 많지 않아 이용에 어려 움을 겪고 있다. 본 연구에서는 자생식물인 산오이풀의 관수 주기 및 NaCl 농도에 따른 생장, Fv/Fm, NPQ, 성분 변화, 무기성분 변화를 조사하여 내건 및 내염성 보유 여부, 생육 한 계 범위, 스트레스 환경에서 생육을 유지하기 위한 반응을 파 악하고자 했다. 실험 결과 NaCl 무처리구의 관수주기에 따른 성분 분석에서 엽록소 함량의 감소를 제외하고 유의한 차이가 나타나지 않았으나 이는 토양수분함량이 건조 스트레스를 유 발할 정도로 감소하지 않았기 때문으로 보인다. 염 처리에서 는 2주 이후 급격한 스트레스 반응이 나타났고 3주차부터 고 사하기 시작하여 6주차에 모든 개체가 최종 고사했다. 이러한 결과는 2주까지 염 스트레스에 의해 유발되는 2가지 스트레 스 중 초기에 나타나는 삼투 스트레스에는 저항하였으나 이후 나타나는 NPQ의 감소 등 이온 스트레스에 의해 유발된 광합 성 기구 붕괴로 인해 정상적인 생육을 유지할 수 없었기 때문 에 나타난 것으로 보인다. 그러나 무기이온 분석은 이온 스트 레스에 저항하기 위한 메커니즘의 존재 가능성을 시사하였다. 상대적으로 염 농도가 낮을 때에는 세포내 Ca2+ 및 K+ 수준이 높았는데, 이는 Ca2+ 수준이 높아짐에 따라 Na+를 세포 밖으 로 방출시키는 단백질, Na+를 K+와 함께 수송하는 단백질이 기능하여 Na+축적을 지연시키는 반응이 있었음을 시사한다. 그러나 NaCl을 고농도로 처리했을 때는 이러한 반응이 관찰 되지 않았다. 따라서 산오이풀은 염 스트레스에 의해 야기되 는 삼투 스트레스에 강한 저항성을 가지고 있고 이온 독성을 줄이기 위한 메커니즘으로 Na+ 세포내 축적을 지연시키는 것으로 보이지만, 심한 염 스트레스를 받았을 때 나타나는 급격 한 반응에서 이러한 메커니즘이 기능하지 못하고 이온독성에 매우 취약한 것으로 여겨진다. 본 연구를 통해 자생식물인 산 오이풀의 활용을 늘리는 데 기초적인 자료를 제공할 수 있을 것으로 생각된다.
        4,600원
        8.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        농촌진흥청 국립원예특작과학원에서는 2021년 분홍색계 소 형 호접란 ‘Arihong’을 육성하였다. 2014년 밝은 분홍색 소형 품종 Phalaenopsis ‘Wedding’와 백색 바탕에 분홍빛을 가지는 소형종 P. ‘[{KT1398-1×(KM-6)-4}×Chiangbeauty-88]-23’ 를 모본과 부본으로 교배하였다. 2018년 실생 120개체 중 잎자세, 화색, 화형, 꽃대수 등 특성이 우수한 ‘14104-1’ 개체를 선발하여 기내 화경배양을 통해 증식하였다. 2018년부터 2021년에까지 1차, 2차특성검정을 통해 품종의 안정성과 균일성을 확인한 후 ‘Arihong’로 명명하였다. 이 품종은 백색(WG155B) 바탕에 중앙 에는 보라빛 분홍색(PVG80B)을 띄며, 진한 자주색(PG78A) 순판 을 가지는 것이 특징이다. 꽃대가 2대씩 발생하고 꽃대 길이는 평균 42.1cm 소형 분화로 적절한 크기를 가지고 있다. 평피기 형태의 꽃은 길이와 폭이 각각 5.1, 5.7cm이며, 분지가 발생하여 1개의 꽃대에 13.0개의 소화가 착생한다. ‘Arihong’의 잎은 수평으로 자라며 길이와 폭이 각각 13.0cm, 4.9cm였다. 또한 초세가 우수하고 생육 속도가 빨라 엽수 확보가 용이한 특성을 보였다.
        4,000원
        9.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        경상남도농업기술원 화훼연구소에서 2021년 화색이 연황 색이며 화심이 녹색인 미니 절화용 거베라 품종 ‘크림쿠키’ (Cream Cookie)를 육성하였다. ‘크림쿠키’ 품종은 2014년 황색 미니 ‘Sun City’를 모본으로, 백색 미니 ‘Blandy’를 부 본으로 인공교배를 실시하여 육성된 품종이다. 2021년까지 생육 및 개화 특성검정과 기호도 조사를 실시하였으며 ‘크림 쿠키’의 생육 및 개화특성을 대조품종인 ‘Sun City’와 비교하 였다. ‘크림쿠키’는 연황색(RHS 4C) 꽃잎과 녹색 화심을 가진 반겹꽃 거베라 품종이다. 화폭이 7.1cm인 작은 꽃이며, 화경 장은 58.9cm였다. 화경 직경은 상부 0.4cm, 하부 0.7cm 였 다. 외부설상화의 길이는 2.8cm이며 폭은 0.8cm였다. 개화 소요일수는 65.7일로 ‘Sun City’에 비하여 18.8일 빨랐으며, 첫 개화시 엽수는 22.4매였다. 연간 주당 절화수량은 102.3 본으로 ‘Sun City’의 82.0본에 비하여 20.3본이 많았다. 절 화수명은 17.8일로 ‘Sun City’보다 4.1일 더 길었다. ‘크림쿠 키’는 화폭이 7.1cm의 미니 품종으로 연간 주당 100본 이상 절화 생산이 가능하다. 또한 수확 후 꽃 캡 씌우기, 꽃목 보강 등 추가적인 작업을 생략할 수 있어 생산비 절감이 가능하므 로 농가보급 확대가 기대된다.
        4,000원
        15.
        2023.11 구독 인증기관·개인회원 무료
        For safe disposal of radioactive wastes, accurate analysis of nuclear isotopes is important. It is known that there are 14 nuclides that have to identify nuclide-specific concentration levels. 63Ni, one of non-volatile nuclear isotopes which is included in those 14 nuclides, has to follow chemical separation for exact analysis. As various analysis methods were developed, various methods for analyzing 63Ni also emerged. Past method has used measurement specimens of 59Ni, after 59Ni measurement has been done. It used HClO4, known as strong oxidizing agent, to dissolve DMG, an organic substance used to form 59Ni precipitates. Nowadays, we analyze 59Ni and 63Ni simultaneously, which enables short analysis time, without use of HClO4. But high accuracy is just as important as short measurement time and efficiency. So, this paper compare 63Ni specific activity value used new method with the value, past method used, using real sample’s data. As a result, all sample data from new method’s relative 63Ni specific activity is within the uncertainty range of past ones based on past specific activity value. Consistency of new method’s result and past method’s data increased the reliability of the data and accuracy of those methods.
        16.
        2023.11 구독 인증기관·개인회원 무료
        If radioactive plumes are released outside due to loss of containment building integrity during a nuclear power plant accident, these materials might travel with the wind, affecting both the surrounding environment and neighboring countries. In China, most nuclear power plants are located on the eastern coast. Consequently, a radioactive plume generated during an accident could negatively impact even the western part of the Korean Peninsula due to westerly winds. To detect such problems early, respond quickly, and protect residents, a system that can monitor aerial radiation under normal conditions is needed. Additionally, a detection system that can operate in real-time in an emergencies conditions is required. The current method for aerial radiation measurement takes environmental radiation data from a monitoring post 1.5 m above the ground and converts it to altitude. To measure actual aerial radiation, an expansive area is surveyed by aircraft. However, this approach is both time-consuming and expensive. Thus, to monitor radioactive plumes influenced by environmental factors like wind, we need a radiation detector that can gauge both radioactivity and directionality. In this study, we developed a radiation detector capable of assessing both the radioactivity and directionality of a radioactive plume and conducted its performance evaluation. We miniaturized the radiation detector using a CZT (Cadmium Zinc Telluride) sensor, enabling its mounting on unmanned aerial vehicles like drones. It is configured with multi-channels to measure directionality of a radioactive plumes. For performance evaluation, we positioned two-channel CZT sensors at 90 degrees and measured the energy spectrum for angle and distance using a disk-type radioactive isotope. Using this method, we compared and analyzed the directionality performance of the multi-channel radiation detector. We also confirmed its capability to discern specific radioactivity information and nuclide types in actual radioactive plumes. Our future research direction involves mounting the multi-channel radiation detector on a drone. We aim to gather actual aerial radiation data from sensors positioned in various directions.
        17.
        2023.11 구독 인증기관·개인회원 무료
        Wolsong Unit 1, a domestic heavy water reactor nuclear power plant, was permanently shut down in December 2019. Accordingly, Wolsong Unit 1 plans to prepare a Final Decommissioning Plan (FDP), submit it to the government by 2024, receive approval for decommissioning, and begin full-scale decommissioning. One of the important tasks in the decommissioning of Wolsong Unit 1 is to determine the decommissioning strategy. It is necessary to decide on a decommissioning strategy considering various factors and variables, secure the technical background, and justify it. The selection of a decommissioning strategy is best achieved through the use of formal decisionmaking assistance techniques, such as considerations related to influencing factors. It is very important to understand the basic decommissioning strategy alternatives and whether sufficient consideration has been given to situations where only a single unit is permanently shut down in a multi-unit site like Wolsong Unit 1, while the remaining units are in normal operation. As a process for selecting a decommissioning strategy, first, all considerations that could potentially affect decommissioning presented in the KINS Decommissioning Safety Review Guidelines were synthesized, influencing factors to be used in the decision-making process were determined, and the concept was defined. In order to select the most appropriate decommissioning strategy by considering various evaluation attributes of possible decommissioning alternatives (immediate dismantling and delayed dismantling), the Wolsong Unit 1 decommissioning strategy was evaluated by reflecting the AHP decision-making technique.
        18.
        2023.11 구독 인증기관·개인회원 무료
        The domestic Pressurized Heavy Water Reactor (PWHR) nuclear power plant, Wolsong Unit 1, was permanently shut down on December 24, 2019. However, research on decommissioning has mainly focused on Pressurized Water Reactors (PWRs), with a notable absence of both domestic and international experience in the decommissioning of PHWRs. If proper business management such as radiation safety and waste is not performed, it can lead to increased business risks and costs in decommissioning. Therefore, the assessment of waste volume and cost, which provide fundamental data for the nuclear decommissioning process, is a crucial technical requirement before initiating the actual decommissioning of Wolsong Unit 1. Decommissioning radiation-contaminated structures and facilities presents significant challenges due to high radiation levels, making it difficult for workers to access these areas. Therefore, technology development should precede decommissioning process assessments and safety evaluations, facilitating the derivation of optimal decommissioning procedures and ensuring worker safety while enhancing the efficiency of decommissioning operations. In this study, we have developed a program to estimate decommissioning waste amounts for PHWRs, building upon prior research on PWR decommissioning projects while accounting for the specific design characteristics of PHWRs. To evaluate the amount of radioactive waste generated during decommissioning, we considered the characteristics of radioactive waste, disposal methods, packaging container specifications, and the criteria for the transfer of radioactive waste to disposal operators. Based on the derived algorithm, we conducted a detailed design and implemented the program. The proposed program is based on 3D modeling of the decommissioning components and the calculation of the Work Difficulty Factor (WDF), which is used to determine the time weighting factors for each task. Program users can select the cutting and packaging conditions for decommissioning components, estimate waste amount based on the chosen decommissioning method, and calculate costs using time weighting factors. It can be applied not only to PHWRs, but also to PWRs and non-nuclear fields, providing a flexible tool for optimizing decommissioning process.
        19.
        2023.11 구독 인증기관·개인회원 무료
        After the major radioactivation structures (RPV, Core, SG, etc.) due to neutron irradiation from the nuclear fuel in the reactor are permanently shut down, numerous nuclides that emit alpha-rays, beta-rays, gamma-rays, etc. exist within the radioactive structures. In this study, nuclides were selected to evaluate the source term for worker exposure management (external exposure) at the time of decommissioning. The selection of nuclides was derived by sequentially considering the four steps. In the first stage, the classification of isotopes of major nuclides generated from the radiation of fission products, neutron-radiated products, coolant-induced corrosion products, and other impurities was considered as a step to select evaluation nuclides in major primary system structures. As a second step, in order to select the major radionuclides to be considered at the time of decommissioning, it is necessary to select the nuclides considering their half-life. Considering this, nuclides that were less than 5 years after permanent suspension were excluded. As a third step, since the purpose of reducing worker exposure during decommissioning is significant, nuclides that emit gamma rays when decaying were selected. As a final step, it is a material made by radiation from the fuel rod of the reactor and is often a fission product found in the event of a Severe accident at a nuclear power plant, and is excluded from the nuclide for evaluation at the time of decommissioning is excluded. The final selected Co-60 is a nuclide that emits high-energy gamma rays and was classified as a major nuclide that affects the reduction of radiation exposure to decommissioning workers. In the future, based on the nuclide selection results derived from this study, we plan to study the evaluation of worker radiation exposure from crud to decommissioning workers by deriving evaluation results of crud and radioactive source terms within the reactor core.
        20.
        2023.11 구독 인증기관·개인회원 무료
        The development of separation method of radioactive tritium is imperative for treating tritiumcontaminated water originating from nuclear facilities. Polymer electrolyte membrane electrolysis technology represents a promising alternative to conventional alkaline electrolysis for tritium enrichment. Nevertheless, there has been limited research conducted thus far on the composition of membrane electrode assemblies (MEAs) specifically optimized for tritium separation, as well as the methods used for their fabrication. In this study, we conducted an investigation aimed at optimizing MEAs specifically tailored for tritium separation. Our approach involved the systematic variation of MEA components, including the anode, cathode, porous transport layer, and electrode formation method. The water electrolysis efficiency and the H/D separation factor in deuterated water (1%) were evaluated with respect to both the preparation method and the composition of the MEA. To assess the long-term stability of the MEAs, changes in cell voltage, resistance, and the active electrode area were analyzed using impedance analysis and cyclic voltammetry. Furthermore, we examined H/D separation factor both before and after degradation. The results showed that MEAs with different anode/cathode configurations and electrode formation methods improved the electrolysis efficiency compared to commercial MEAs. In addition, the degree of change in the resistance value was also different depending on the electrode formation method, indicating that the electrode formation method has a significant impact on the stability of the electrolysis system. Therefore, the study showed that the efficiency and long-term stability of the water electrolzer can be improved by optimizing the MEA fabrication method.
        1 2 3 4 5