검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2017.06 KCI 등재 서비스 종료(열람 제한)
        In this study, we elucidated the molecular mechanism of silymarin by which silymarin may inhibits cell proliferation in human colorectal cancer cells in order to search the new potential anti-cancer target associated with the cell growth arrest. Silymarin reduced the level of c-Myc protein but not mRNA level indicating that silymarin-mediated downregulation of c-Myc may result from the proteasomal degradation. In the confirmation of silymarin-mediated c-Myc degradation, MG132 as a proteasome inhibitor attenuated c-Myc degradation by silymarin. In addition, silymarin phosphorylated the threonine-58 (Thr58) of c-Myc and the point mutation of Thr58 to alanine blocked its degradation by silymarin, which indicates that Thr58 phosphorylation may be an important modification for silymarin-mediated c-Myc degradation. We observed that the inhibition of ERK1/2, p38 and GSK3β blocked the Thr58 phosphorylation and subsequent c-Myc degradation by silymarin. Finally, the point mutation of Thr58 to alanine attenuated silymarin-mediated inhibition of the cell growth. The results suggest that silymarin induces the cell growth arrest through c-Myc proteasomal degradation via ERK1/2, p38 and GSK3β-dependent Thr58 phosphorylation.
        2.
        2015.06 KCI 등재 서비스 종료(열람 제한)
        The flower buds of Sophora japonica L (SF), as a well-known traditional Chinese medicinal herb, have been used to treat bleeding-related disorders such as hematochezia, hemorrhoidal bleeding, dysfunctional uterine bleeding, and diarrhea. However, no specific anti-cancer effect and its molecular mechanism of SF have been described. Thus, we performed in vitro study to investigate if treatment of SF affects activating transcription factor 3 (ATF3) expression and ATF3-mediated apoptosis in human colorectal cancer cells. The effects of SF on cell viability and apoptosis were measured by MTT assay and Western blot analysis against cleaved poly (ADP-ribose) polymerase (PARP). ATF3 activation induced by SF was evaluated using Western blot analysis, RT-PCR and ATF3 promoter assay. SF treatment caused decrease of cell viability and increase of apoptosis in a dose-dependent manner in HCT116 and SW480 cells. Exposure of SF activated the levels of ATF3 protein and mRNA via transcriptional regulation in HCT116 and SW480 cells. Inhibition of extracellular signal-regulated kinases (ERK) 1/2 by PD98059 and p38 by SB203580 attenuated SF-induced ATF3 expression and transcriptional activation. Ectopic ATF3 overexpression accelerated SF-induced cleavage of PARP. These findings suggest that SF-mediated apoptosis may be the result of ATF3 expression through ERK1/2 and p38-mediated transcriptional activation.