검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2022.10 구독 인증기관·개인회원 무료
        Boric acid-containing B-10 is used in a nuclear reactor as a coolant and absorbs thermal neutrons generated during nuclear fission in the primary circuit. Boron-containing coolant water waste is generated from maintenance, floor drain, decontamination, and reactor letdown flows. There are two options for aqueous solution waste of boric acid. One is recycling and discharge through filtration, ion exchange, and reverse osmosis. The other is immobilization after evaporation and crystallization processes. The dry powder of boric acid waste liquid can be immobilized by cement, polymer, etc. Before the mid-1990s, concentrated boric acid waste was solidified with a cement matrix. To overcome the disadvantage of low waste loading of cement waste form, a method of solidifying with paraffin was adopted. However, paraffin solids were insufficient to be disposed of as final waste. Paraffin is a kind of soft solidified material and has low compressive strength and poor leaching resistance. As a result, it was decided as an unsuitable form for disposal. In KOREA, paraffin waste form was adopted for boric acid waste treatment in the 1990s. A large amount of paraffin waste forms about 20,000 drums (200 l drum) were generated to treat boric acid waste and were stored in nuclear power sites without disposal. In this study, we want to obtain high-purity boric acid waste by oxidizing and decomposing solid paraffin waste form through a boric acid catalytic reaction. In this reaction, paraffin is separated in the form of various by-products, which can then be treated through a liquid waste treatment device or an exhaust gas treatment device. The proper temperature for sample decomposition during the catalytic reaction was set through TGA analysis. Compositions of by-products and residues generated at each stage of the reaction could be analyzed to determine the state during the reaction. Finally, the boric acid waste powder was perfectly separated from paraffin waste form with disposable products through this pyrolysis process.
        5.
        2016.04 KCI 등재 서비스 종료(열람 제한)
        We examined the effects of ocean acidification (OA) and eutrophication on the physiology of a red alga, Gracilariopsis chorda, using specimens collected at Wando Island, Korea, in July of 2015. The samples were transported to a laboratory and placed on growth media for treatments involving low or high levels of ammonium (4 μM or 60 μM NH4 +) and low or high pH (7.5 or 8.2). The control treatment used filtered seawater (pH 8.2 and 4 μM NH4 +). All experiments were conducted at 20°C and under a lighting intensity of 80 μmol photons m-2 s-1, with or without an injection of CO2 (pH 7.5). In addition, we calculated rates of respiration under darkness, at a pH of 7.5 and 60 μM NH4 +. Fluctuations in pH as well as the evolution of photosynthetic oxygen and NH4 + uptake rates were monitored for 6 h. The greatest increase in pH levels, from 7.50 to 8.65, occurred in response to 60 μM NH4 +, whereas the largest decrease, from 7.50 to 7.42, was associated with elevated respiration rates. At a pH of 7.5, rates of oxygen evolution were higher (236% saturation) for samples treated with 60 μM NH4 + than for the control (121% saturation). Ammonium uptake was highest at pH 7.5 and 60 μM NH4 +, with a rate of 0.526±0.002 μmol g-1 FW h-1, followed in order by the treatments of pH 8.2/60 μM NH4 +, pH 7.5/4 μM NH4 +, and the control (pH 8.2/4 μM NH4 +). We speculated that the rates of photosynthesis and NH4 + uptake could be enhanced at a higher ammonium concentration and lower pH because CO2 concentrations were increased through greater photosynthetic activity. Therefore, these findings suggest that the physiology of G. chorda populations can be improved by the interaction of optimized CO2 concentrations and an adequate supply of essential nutrients such as ammonium.