Only limited information is available on the measured exposure levels of residents according to the construction age of apartments. As such, present study was conducted to measure and to compare the bedroom, living-room, and outdoor air levels of MTBE and benzene, toluene, ethyl benzene and m,p-xylene(BTEX) in both newer and older apartments. For both newer and older apartments, all the compounds except for MTBE showed significantly higher levels in bedrooms or living-rooms as compared to the outdoor concentrations. The ratio of bedroom or living-room median concentration to outdoor concentration was close to 1 for MTBE, whereas it was larger than 1 for other target compounds. It was also found that the bedroom and living-room appeared to have similar indoor sources and sinks for BTEX, but not for MTBE. The median concentration ratios of the newer apartments to the older apartments ranged from 1.63 to 1.81, depending upon the compounds. In contrast, the MTBE concentrations did not differ significantly between the newer and older apartments, thereby suggesting that although newer buildings could emit more VOCs, this is not applicable to all VOCs. Conclusively, the findings of present study should be considered, when designing exposure studies associated with VOC emissions in buildings and/or managing indoor air quality according to construction age of buildings.
This study was designed to evaluate qualitatively and quantitatively the pollutant compositions, which were emitted from three types of mosquito repellents(MRs)(mat-, liquid-vaporized, and coil-type) by utilizing a 50-L environmental chamber. A qualitative analysis revealed that 42 compounds were detected on the gas chromatography/ mass spectrometer system, and that the detection frequency depended upon chemical types. Nine of the 42 compounds exhibited a detection frequency of 100%. Four aromatic compounds(benzene, ethyl benzene, toluene, and xylene) were detected in all test MRs. The concentration equilibriums in the environmental chamber were achieved within 180 min after sample introduction. The coil-type MR represented higher chamber concentrations as compared with the mat- or liquid-vaporized-type MR, with respect to the target compounds except for naphthalene. In particular, the chamber concentrations of ethyl benzene, associated with the use of coil-type MR, were between 0.9 and 65 mg m-3, whereas those of mat- and liquid-vaporized-type MRs were between 0.5 and 2.0 mg m-3and 0.3 and 1.4 mg m-3, respectively. However, naphthalene concentrations in the chamber, where a liquid-vaporized-type MR was placed, were measured as between 17.8 and 56.3 mg m-3, but not detected in the chamber, where a mat- or coil-type MR was placed. The empirical model fitted well with the time-series concentrations in the environmental chamber(in most cases, determination coefficient, R2 ≳ 0.9), thereby suggesting that the model was suitable for testing emissions. In regards to the target compounds except for benzene, although they were emitted from the MRs, health risk from individual exposure to them were estimated not to be significant when comparing exposure levels with no observed adverse exposure levels or lowest observed adverse exposure levels of corresponding compounds. However, it was concluded that the use of MRs could be an important indoor source as regards benzene.