We present the characteristics of the Seoul National University 4k Camera (SNUCAM) and report its performance on the 1.5m telescope at the Maidanak observatory in Uzbekistan. SNUCAM is a CCD camera with a pixel scale of 0.266" in 4096 X 4096 format, covering 18.1' X 18.1' field of view on the 1.5m. The camera is currently equipped with Bessell UBVRI, Hα, SDSS ugriz, and Y-band filters, allowing us to carry out a variety of scientific programs ranging from exoplanet studies to survey of quasars at high redshift. We examine properties of SNUCAM such as the bias level and its temporal variation, the dark current, the readout noise, the gain, the linearity, the fringe patterns, the amplifier bias, and the bad pixels. From our observations, we also constructed the master fringe frames in I-, z-, and Y-band. We outline some of the current scientific programs being carried out with SNUCAM, and demonstrate that SNUCAM on the 1.5m can deliver excellent images that reach to the 5σ detection limits of R~25.5 mag and z~22.7 mag in 1 hour total integration.
We have studied the environmental effect on optical-NIR color gradients of 273 nearby elliptical galaxies. Color gradient is a good tool to study the evolutionary history of elliptical galaxies, since the steepness of the color gradient reflects merging history of early types. When an elliptical galaxy goes through many merging events, the color gradient can be get less steep or reversed due to mixing of stars. One simple way to measure color gradient is to compare half-light radii in different bands. We have compared the optical and near infrared half-light radii of 273 early-type galaxies from Pahre (1999). Not surprisingly, we find that re(V)s (half-light radii measured in V-band) are in general larger than re(K)s (half-light radii measured in K-band). However, when divided into different environments, we find that elliptical galaxies in the denser environment have gentler color gradients than those in the less dense environment. Our finding suggests that elliptical galaxies in the dense environment have undergone many merging events and the mixing of stars through the merging have created the gentle color gradients.