The aim of this study was to investigate the effects of foot position adjuster on body alignment and weight loads in chronic stroke patients. The subjects were 15 chronic stroke patients who were admitted to KHospital in Daegu, South Korea. The study compared the body alignment and weight load changes on flat ground with the foot position adjuster using Foot scan and Dartfish video analysis software. In the results of this study, posterior superior iliac spine (PSIS) alignment decreased significantly after use of the foot position adjuster and center pressure was significantly increased after use of the foot position adjuster. This study suggests that foot position adjuster influences body alignment and weight distribution.
Two sugary mutants, Hwacheong sugary-1 (Hsu1) and Hwacheong sugary-2 (Hsu2) were obtained by chemical mutagenesis from japonica cultivar, Hwacheongbyeo. Sugary mutants exhibited wrinkled and translucent grain with high soluble sugar content. In addition, amber-colored endosperm of sugary mutants was loosely packed due to abnormal starch granules compared to densely packed wild-type. Especially, the grain of Hsu2 mutant was less wrinkled than that of Hsu1, thus Hsu2 can be polished easily. Previous studies reveal that su1 mutant was resulted from mutation in gene for a debranching enzyme, isoamylase but the sequence of the mutated gene has not been identified. To identify the sequence of sugary genes, the map-based cloning strategy was applied. The genetic study revealed that the phenotype of Hsu2 mutant was controlled by two recessive genes. Interestingly, one of the genes was located on chromosome 8 at the position of isoamylase which was known as su-1. This indicates that mutation in isoamylase gene causes sugary endosperm characteristics. However we found different mutation points between the Hsu1 and Hsu2. The point mutation in Hsu1 was occurred at 10th exon whereas the other mutation related with Hsu2 was occurred at 15th exon. As mentioned above, the Hsu2 mutant has less wrinkled shape and less soluble sugar content than the Hsu1 mutant. Thus, we hypothesize that the other gene controlling Hsu2 mutant phenotype may have a role in weakening the effect of the su-1. Further study on the other gene associated with the Hsu2 phenotype is in progress.