본 연구에서는 미국 해양 대기청(NOAA)의 NOAA-20 위성에 장착된 차세대 고해상도 복사계인 VIIRS로부터 산출된 적외 해수면온도의 자료를 수집하고, 실측 자료와의 일치점을 생산하여 한반도 주변 해역에서의 정확도를 검증 하였다. 2020년 5월부터 2023년 6월까지 최근 3년간의 자료를 사용하였고, 총 75,700개의 일치점을 생산하였다. NOAA-20/VIIRS 해수면온도는 표층 뜰개 부이 관측 해수면온도와 비교해보았을 때 약 0.52K의 평균 제곱근 오차와 – 0.12 K의 평균 편차를 보였고, 이는 전구 해역을 대상으로 한 기존의 정확도 검증 연구 결과값을 상회하는 수치였다. NOAA-20 해수면온도의 오차 특성 분석 결과 겨울과 봄에는 음의 편차가, 여름철에는 양의 편차를 보이는 계절적 특 성이 나타났으며, 15-16시에 최대 평균 제곱근오차, 최대 양의 편차 및 22-24시에 최소 평균제곱근오차, 최소 편차를 가지는 일간 변화를 보였다. 이외에도 NOAA-20 해수면온도의 오차는 풍속, 위성 천정각, 연안으로부터의 거리, 해수면 온도의 공간 구배 크기에 영향을 받아 변동하는 특성이 나타났다. 전반적으로 위성 해수면온도의 편차값은 14ms1 이 상의 풍속 범위에서 풍속이 커질수록 양의 방향으로 증가하는 경향을 보였으며, 5 m s1 이하의 낮은 풍속 범위에서는 풍속이 약해질수록 낮/밤 자료에 따라 각각 양의 방향, 음의 방향으로 편차가 증가하였다. 위성 천정각이 커질수록 해 수면온도의 오차 범위는 급격하게 증가하였으며, 연안에 근접할수록 (<300 km) 위성 해수면온도의 오차가 증가하는 것 을 확인할 수 있었다. 해수면온도의 공간 구배는 그 크기가 커질수록 위성 해수면온도의 평균 제곱근 오차를 증폭시키 는 경향이 나타났다. 국지적인 해역에서의 위성 해수면온도 정확도 및 오차 특성은 전구 해역에서의 전반적인 특성과는 다르게 나타날 수 있다는 점을 고려할 때 본 연구는 향후 한반도 주변해에서 VIIRS 해수면온도를 활용하기 위한 선행 연구로 해수면온도 오차의 변동 특성 및 분포에 대한 깊은 이해가 필요함을 시사한다.
해수면온도는 해양-대기의 현상을 이해하고 기후변화를 예측하기 위해 사용되는 중요한 변수이다. 마이크로파 영역의 인공위성 원격탐사는 구름과 강수와 같은 기상현상 위성 관측 측기의 경로에 존재하더라도 해수면온도 획득을 가능하게 한다. 따라서 마이크로파 해수면온도의 높은 활용도를 고려하면 위성 해수면온도를 정확도를 지속적으로 검증 하고 오차 특성을 분석할 필요가 있다. 본 연구에서는 2014년 3월부터 2021년 12월까지 약 8년 동안 Global Precipitation Measurement (GPM)/GPM Microwave Imager (GMI) 마이크로파 해수면온도의 정확도를 표층 뜰개 부이 수온 자료를 사용하여 검증하였다. GMI 해수면온도는 실측 해수면온도에 비해 0.09 K의 편차와 0.97 K의 평균 제곱근 오차를 보였 고, 이는 기존 연구 결과에 비해 다소 높게 나타났다. 이외에도 GMI 해수면 온도의 오차 특성은 위도, 연안과의 거리, 해상풍 및 수증기량과 같은 환경적 요인과 관련성이 있다. 오차는 육지에서 300 km 이내의 거리에서 해안 지역에 가까 운 지역과 고위도 지역에서 증가하는 경향이 있다. 또한 낮에는 약한 풍속(<6 m s−1 ), 밤에는 강한 풍속(>10 m s−1 ) 범위 에서 상대적으로 높은 오차가 나타났다. 대기 수증기는 30 mm 미만의 매우 낮은 범위 또는 60 mm보다 큰 매우 높은 범위에서 높은 해수면온도 차이에 기여했다. 이러한 오차들은 저수온에서 GMI 자료의 정확도가 떨어지는 기존 연구와 일치하며, 연안으로부터의 거리, 풍속, 수증기량에 의한 오차의 경우 육지와 해양의 방사율 차이 및 바람에 의한 해수 면 거칠기 변화, 수증기의 마이크로파 대기 흡수에서 기인하는 것으로 추정된다. 이는 한반도 주변해에서 마이크로파 위성 계산 SST를 보다 광범위하게 활용하기 위해서는 GMI 해수면온도 오차의 특성에 대한 이해가 필요함을 시사한다.
우리나라의 수산 양식의 대부분이 이루어지는 연안과 내만에 최근 빈번한 고수온 현상으로 매년 막대한 양식 피해가 발생하고 있다. 2018년~2021년의 최근 4년간의 7월은 이례적인 고수온, 장마, 태풍 등에 의해 1990년 이후 수온의 연별 변동성이 1994년~1997년에 이 어 두 번째로 크게 나타났다. 동·서·남해의 대표적인 고수온 양식피해 우심해역(천수만, 가막만, 구룡포)에 대한 열속과 열수지 분석을 통 해 여름철 천수만과 가막만의 고수온 발생은 주로 대기로부터 해수면을 통한 열유입에 의한 것임을 확인하였다. 벌크식으로 계산한 순열 속과 수온변화로부터 계산한 해양 열 저장률로부터 4년간(2018년~2021년)의 7월 평균 해양 열 수송률을 추산한 결과, 서산 창리는 순열속 의 13.5 %, 여수 신월은 순열속의 62.3 %가 외부로 유출되는 것으로 계산되었다, 구룡포 하정은 순열속의 22.2 %가 평균적으로 외부로 유출 되는 것으로 평가되었으나, 냉수대 발생 유무에 따라 연도별로 해양 열 수송률이 순열속의 -174.5 %에서 132.5 %까지 큰 차이를 보였다.
위성 해수면온도 합성장은 수치예보모델의 입력 자료 및 지구온난화와 기후 변화 연구에 활용되는 중요한 자료이다. 본 연구에서는 2007년부터 2018년까지 6종류의 위성 해수면온도 합성장 자료를 수집하여 한반도 주변 해역에서 각 해수면온도 합성장 자료의 공간 분포 특성을 분석하였다. 기상청 해양기상부이 실측 수온 자료와 해수면온도 합성장 자료의 시계열을 비교하고 오차의 최대값 및 최대값이 나타나는 시기를 분석하였다. 황해 연안에 위치한 덕적도와 칠발도 부이에서 위성 해수면온도 합성장과 실측 수온의 차는 1년주기 또는 반년주기의 높은 변동성을 보였다. 포항 부이 에서는 강한 용승에 의해 냉수대가 발생한 2013년 여름철에 높은 수온 차가 나타났다. 해수면온도 자료의 시계열을 활용하여 스펙트럼 분석을 수행한 결과, 일별 위성 해수면온도 합성장은 약 1개월 이상의 주기에서는 실측 자료와 유사 한 스펙트럼 에너지를 보였다. 반면 위성 해수면온도 합성장과 실측 수온의 스펙트럼 에너지의 차는 시간 주파수가 증 가할수록 증가하는 경향을 보였다. 이는 위성 해수면온도 합성장 자료가 연안 부근 수온의 시간적 변동성을 적절하게 표현하지 못하였을 가능성을 시사한다. 위성 해수면온도 영상의 해양 전선은 공간 구조와 강도의 측면에서 위성 해수면 온도 합성장 자료 간 차이점을 보였다. 해수면온도 합성장에서 표현되는 공간 규모 또한 공간 스펙트럼 분석을 통해 조사하였다. 그 결과 고해상도 해수면온도 합성 영상이 저해상도 해수면온도 영상보다 상대적으로 중규모 해양 현상의 공간 구조를 더 잘 표현하였다. 따라서 실제 중규모 해양 현상을 보다 구체적으로 표현할 수 있는 위성 해수면온도 합성장 생산을 위한 고도의 기술 개발이 필요하다.
본 연구에서는 강한 한파가 발생했던 2018년과 온난 한파가 발생했던 2019년의 기온에 따른 수온의 반응 및 지연시간과 북풍계 열 바람 빈도와의 상관관계를 분석하였다. 사용된 시간 자료는 국립수산과학원에서 제공하는 7개 지점 해역별 수온자료와 수온관측소 인 근 7개 지점 AWS 기온자료를 이용하였다. 관측되지 못한 자료는 내삽법으로 근사값을 계산하였고, FIR Filter를 이용하여 자료의 주기성을 파악하였다. 그 결과, 강한 한파가 발생했던 2018년은 북풍계열 바람을 통해 차가운 공기가 남하하면서 기온을 하강시켜 전 해역에 저수온을 유발한 반면 온난 한파가 발생했던 2019년은 평년 수준의 기온으로 하강하였지만 수온은 크게 변화하지 않았다. 강한 한파가 발생했 던 2018년 기온 하강에 따른 수온의 지연시간은 평균 14시간으로 0.7 이상의 높은 상관성을 나타냈고 온난 한파가 발생했던 2019년은 평균 지연시간이 20시간으로 0.44-0.67 사이의 상관성을 보였다. 본 연구를 통해 해역별로 기온 하강에 따른 표층수온의 반응을 해석하였고 지연시간을 파악함으로써 양식생물의 피해를 최소화하고 한파 피해의 신속한 대응에 기여할 수 것으로 기대한다.
We examined long-term variations in sea surface temperature (SST) and annual amplitudes of SST around the Korean Peninsula. Two SST data sets with data periods of approximately 51 years and longer than 100 years, respectively, were obtained from the National Institute of Fisheries Science and Japan Meteorological Agency. SST of Korean waters clearly increased during last 51 years (1968-2018), which was 2.5 times higher than the global trend. This significant increasing trend was caused by the dominant increasing SST trend during winter. However, a negative and positive SST anomaly frequently appeared during winter and summer, respectively, in a recent decade. These features of seasonal SST variation have changed the annual amplitude of SST, and resulted in a drastically increasing trend after 2009. Using the longer SST data set, it was revealed that the decreasing SST trend in winter began in the 2000s and the increasing SST trend in summer bagan in the 1990s. During a recent decade, there was a distinctive SST increase in summer, whereas a clear decrease in winter. In summary, the annual amplitude of SST around the Korean Peninsula significantly changed from a decreasing trend to an increasing trend during a recent decade.
국립수산과학원은 과거 해양관측자료 복원사업을 통해 1961년 이전의 정선해양관측 및 연안정지관측 자료를 복원하여 디지털화 하였다. 먼저 한국근해 해양관측(정선해양관측) 자료 중 과거부터 현재까지 정점이 일치하는 21개 정점에 대한 지난 80년-92년간 표층 수온의 연변동을 분석한 결과 다소 차이는 있으나 상승 경향을 나타내었으며, 서해와 남해는 기존 연구와 동일하게 연안역보다 근해역에 위치한 정점에서 수온상승 경향이 높게 나타났다. 그러나 동해는 기존 연구와 달리 연안역보다 근해역에 위치한 정점에서 낮은 수온상승 경향을 나타내었다. 다음으로 복원된 연안정지관측 자료 중 각 동·서·남해를 대표할 수 있는 3개 정점에 대한 지난 89년-98년간 표층수온의 연변동을 살펴보면 동해(주문진, 1.63℃), 남해(거문도, 1.16℃). 서해(부도, 0.79℃)로 동해의 상승경향이 가장 뚜렷하였으며, 뚜렷한 주기 성은 파악하기 어려우나 대체로 3~6년을 주기로 상승과 하강을 반복함을 알 수 있었다. 특히 1980년대 이후 대부분 정점에서 양의 편차를 나타내었다. 마지막으로 해양-대기 상호작용을 이해하기 위해 연안정지관측정점의 표층수온변화에 따른 기온의 상관성을 분석한 결과 상관계수 값이 남해(거문도)는 0.76, 서해(부도)는 0.34, 동해(주문진)는 0.32로 남해가 가장 높게 나타났다.
During the winter of 2017/2018, significantly low water temperatures were detected around the western and southern coasts of Korea (WSCK). In this period, sea surface temperature (SST) in the Korea Waters was about 2℃ lower than mean temperature. Using the real-time observation system, we analyzed the temporal variation of SST during this period around the western and southern coasts. Low water temperature usually manifested over a period of about 10 ~ 20 days. The daily Arctic oscillation index was also similarly detectable with the variation of SST. From the cross-correlation function, we compared two periodic variations, which were SST around the WSCK and the Arctic oscillation index. The cross correlation coefficients between both variations were approximately 0.3 ~ 0.4. The time lag of the two time series was about 6 to 7 days. Therefore, significanlyt low water temperatures during winter in the Korean coastal areas usually became detectable 6 to 7 days after the negative peak of Arctic oscillation.
The purpose of this study is to analyze the climate change exposure of fisheries and fish species in the southern sea of Korea under the RCP climate change scenarios. The extent of exposure was calculated through weighted sum of the sea temperature forecasted by National Institute of Fisheries Science, and the weight were obtained from the time-space distribution of each fisheries or species, based on the micro-data for the fishing information reported by each fisherman. Results show that all the exposed sea temperature of RCP8.5 is higher than that of RCP4.5 in year 2100 as well as in near 2030, therefore it is thought to be very important to reduce the GHG emission even in the short term. The extent of exposure was analyzed to be comparatively high especially in the fisheries such as anchovy drag nets and species like cod, anchovy and squid. Meanwhile the method of this study is considered to be excellent to obtain the accurate extent of exposure under RCP scenarios, and therefore it is applicable on assessing the vulnerability of climate change in fisheries.
This study aims to empirically analyze the relationship between climate change elements and catch amount of coastal fisheries, which is predicted to be vulnerable to climate change since its business scale is too small and fishing ground is limited. Using panel data from 1974 to 2013 by region, we tested the relationship between the sea temperature, salinity and the coastal fisheries production. A spatial panel model was applied in order to reflect the spatial dependence of the ocean. The results indicated that while the upper(0-20m) sea temperature and salinity have no significant influence on the coastal fisheries production, the lower(30-50m) sea temperature has significant positive effects on it and, by extension, on the neighboring areas’s production. Therefore, with sea temperature forecast data derived from climate change scenarios, it is expected that these results can be used to assess the future vulnerability to the climate change.
We used seawater temperature data, measured in the Garolim Bay, to analyze temperature variation on an hourly and daily basis. Lagrange’s interpolation using before and after data was applied to restore nonconsecutive missing temperature data. The estimated error of the data restoration was 0.11oC. Spectral analyses of seawater temperature showed significant periodicities of approximately 12.4 h (semidiurnal tide) and 15.0 d (long-period tide), which is close to those of M2 and Mf partial tides. Variation in seawater temperature was correlated more with tidal height than with air temperature around the Garolim Bay. In June and December, when the seawater temperature difference between the inside and outside of the Garolim Bay was very large, the periodicities of 12.4 h and 15.0 d were highly prominent. These results indicate that the exchange of seawater between the inside and outside of the Garolim Bay induced variations in seawater temperature owing to tide. Understanding temperature variation because of tide helps to prevent abnormal mortality of cultured fish and to predict seawater temperature in the Garolim Bay.
In this study, changes in daily temperature range were investigated using daily maximum and minimum temperatures of Busan and Daegu for last 81 years (1934-2014), and also characteristics of daily temperature range and seasonal fluctuations by urbanization were examined. First, elapsing changes showed a lower decreasing trend in Busan (0.32℃) than Daegu (1.2 8℃) for last 81 years. Daily temperature range showed the highest rise in winter in both Busan and Daegu. Second, daily temperature range due to urbanization showed that Busan had a pronounced decreasing trend before urbanization meanwhile Daegu showed the same trend after urbanization. On seasonal changes, the results of Busan showed a decreasing trend in summer before urbanization, and in autumn after urbanization. For Daegu, the results showed a decreasing trend in spring before urbanization, and in winter after urbanization. Seasonal fluctuations of Busan showed little difference in the pre and post-urbanization, except in winter and summer. There was large difference in daily temperature range in winter after urbanization, and in summer before the urbanization. The results in Daegu showed that there was decreasing trend of daily temperature range in all seasons after urbanization.
In this study, the wind direction and the wind speed of the nearest temperature observations point of the National Weather Service was analyzed in order to investigate the rapid rise and drop of water temperature in the East Coast appeared after passing of the 2015 typhoon No. 9 and 11. Then the figures were simulated and analyzed using the WRF(weather research and forecast) model to investigate in more detailed path of the typhoon as well as the changes in the wind field.
The results were as follows. A sudden drop of water temperature was confirmed due to upwelling on the East coast when ninth typhoon Chanhom is transformed from tropical cyclones into extra tropical cyclone, then kept moving eastwards from Pyongyang forming a strong southerly wind after 13th and this phenomenon lasted for two days. The high SST(sea surface temperature) is confirmed due to a strong northerly wind by 11th typhoon Nangka. This strong wind directly affected the east coast for three days causing the Ekman effect which transported high offshore surface waters to the coast. The downwelling occurred causing an accumulation of high temperature surface water. As a results, the SST of 15m and 25m rose to that of 5m.
It is well known that urban relative humidity has continuous decreasing trend owing to the influence of urbanization. The change of relative humidity is directly influenced by two factors, namely, temperature effect and water vapor effect in various urban effects.
In this study, the temperature and the water vapor effects on the relative humidity change were analyzed by using monthly mean relative humidities for a long period(1961~2013) in Busan and Daegu.
The major results obtained in this study can be summarized as follows. Firstly, the urban dryness was caused mainly by water vapor effect in summer. But, for the other seasons, the urban dryness is mainly due to the temperature effect. Secondly, the relative humidity in Busan is on the decrease until now. This phenomenon is similar to another Korean huge cities such as Seoul, Daejeon and Incheon.
The study selected 10 regions among major Korean cities. Then the study classified the yearly change of relative humidity of those regions for 37 years based on 1996 (from 1974 to 2011) aimed at high temperature days, and examined them by stage regarding daily maximum temperature. For large cities and small cities, in general relative humidity had been likely to increase at high temperatures of 30℃ or over before 1996, whereas it has decreased since 1996. For suburban areas, relative humidity had been prone to diminish before 1996, whereas it has been likely to either increase since 1996 or rarely some of the cities have not shown any change.
The increasing tendency of relative humidity before 1996 in large cities and small cities is believed to be because of an increase of the latent heat of vaporization by the supply of steam from cooling towers established in downtown areas. Meanwhile, the decreasing tendency from 1996 is concluded to be caused by the change from counter-current circular cooling towers, which produce a great quantity of steam including arsenic acid, to cross-flow cooling towers, which produce hardly any steam containing arsenic acid. This change was in accordance with the modification and pursuit of an urban planning law that ordered cooling towers that had been installed on rooftops be installed in the basement of buildings in consideration of a “Green network creation” project by the Ministry of Environment, urban beautification, concerns since 1996 over building collapses, and according to an argument that steam containing arsenic acid could be harmful to human health owing to chemicals contained in the water in the cooling tower in summer.
This study aims to examine the actual status of the urban heat island in Daegu by analyzing the data of 17 automatic weather stations installed in the Daegu area. And the results can be summarized as follows: First, regarding the temperature distribution in Daegu by summer time zones, for the 31 days(August 1st till 31st), 18 days showed daily maximum temperature over 30℃, and 11 days indicated daily minimum temperature over 25℃. The day that showed the highest daily maximum temperature was August 5th, which indicated 36℃. Second, about the spatial distribution of time ratio exceeding 30℃and 25℃, the area with the highest time ratio exceeding 30℃is mostly the downtown(central area), eastern area, and northern area. Meanwhile, regarding the time ratio exceeding 25℃, the downtown area centering around the central area were high as over 70%, and the outskirts were low as under 65%. Third, considering the temporal distribution of daily maximum temperature and daily minimum temperature, daily maximum temperature was shown around 14:00 to 15:00 while the daily minimum temperature was indicated around 17:00 to 18:00. Daily maximum and minimum temperature were appeared at northeast and downtown, respectively. Fourth, regarding the spatial distribution of tropical days and tropical night days, tropical days showed 77%and tropical night days indicated 42% before and after the 24th and also the 13th each. Tropical days were occurred up to 24 days at northeastern area. And the southwestern area of Daegu showed under 22 days. The downtown showed the 14 days of the tropical night. However, the outskirts indicated relatively few days as under 10 days. Fifth, about the spatial distribution of the average daily temperature range (the difference between the highest temperature and lowest temperature), the central area, the central part of the city, showed the smallest as 7.2℃, and as it was closer to the northern area, it became larger, so in the eastern and northern area, it was over 8.8℃or so.