검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, a coal-based pitch containing 12.1% quinoline insoluble (QI) underwent isothermal heat treatment, and changes in the mesophase microstructure were analyzed for the heat treatment duration. The nuclei creation and growth rate of mesophase were affected by the distribution of QI particles in the pitch. The growth process could be explained in four regions through the mesophase area fraction. During the carbonization of carbon blocks, mesophase formation was induced in the binder phase. The physical properties of carbon blocks were measured as a function of residence time. As residence time increased, bulk density decreased and porosity increased, but electrical conductivity increased. It was determined that forming a mesophase in the binder phase during carbonization reduced the size of large pores in carbon block and improved the connectivity between particles, thereby increasing electrical conductivity. These results are expected to show greater improvement in electrical properties after graphitization.
        4,300원
        2.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to identify and analyze the effects of both isothermal heat treatment temperature and residence time on the formation of mesophase in coal tar pitch, especially with respect to its microstructural and crystalline evolution. The formation and growth of mesophase resulted in a decrease in d002 and an increase in Lc, and the degree of such variation was larger when the isothermal heat treatment temperature was higher. In isothermally heat-treated pitch, two distinct domains were observed: less developed crystalline carbon (LDCC) and more developed crystalline carbon (MDCC). When pitch was isothermally heat-treated at 375 °C for 20 h, d002 was 4.015 Å in the LDCC and 3.515 Å in the MDCC. Higher isothermal heat-treatment temperatures accelerated the formation, growth, and coalescence of mesophase. Indeed, in the pitch specimen isothermally heat-treated at 425 °C for 20 h, d002 was 3.809 Å in the LDCC and 3.471 Å in the MDCC. The evolution of mesophase was characterized by pronounced inflection points in d002 curves. It was found that the emergence of these inflection points coincided with pronounced changes in the microstructure of mesophase. This finding confirmed the relationship between inflection points in d002 and the microstructure of mesophase.
        4,200원