Objective. To investigate the effects of the hypoxia inducible factor-1 (HIF-1) activation–mimicking agent cobalt chloride (CoCl2) on the osteogenic differentiation of human mesenchy-mal stem cells (hMSCs) and elucidate the underlying mole-cular mechanisms. Study design. The dose and exposure periods for CoCl2 in hMSCs were optimized by cell viability assays. After confirmation of CoCl2-induced HIF-1α and vas-cular endothelial growth factor expression in these cells by RT-PCR, the effects of temporary preconditioning with CoCl2 on hMSC osteogenic differentiation were evaluated by RT- PCR analysis of osteogenic gene expression, an alkaline phos-phatase (ALP) activity assay and by alizarin red S staining. Results. Variable CoCl2 dosages (up to 500 µM) and exposure times (up to 7 days) on hMSC had little effect on hMSC survival. After CoCl2 treatment of hMSCs at 100 µM for 24 or 48 hours, followed by culture in osteogenic differentiating media, several osteogenic markers such as Runx-2, osteocal-cin and osteopontin, bone sialoprotein mRNA expression level were found to be up-regulated. Moreover, ALP acti-vity was increased in these treated cells in which an accele-rated osteogenic capacity was also verified by alizarin red S staining. Conclusions. The osteogenic differentiation poten-tial of hMSCs could be preserved and even enhanced by CoCl2 treatment.
Hertwig's epithelial root sheath (HERS) consists of bilayered cells derived from the inner and outer dental epithelia and plays important roles in tooth root formation as well as in the maintenance and regeneration of periodontal tissues. With regards to the fate of HERS, and although previous reports have suggested that this entails the formation of epithelial rests of Malassez, apoptosis or an epithelialmesenchymal transformation (EMT), it is unclear what changes occur in the epithelial cells in this structure. This study examined whether HERS cells undergo EMT using a keratin-14 (K14) cre:ROSA 26 transgenic reporter mouse. The K14 transgene is expressed by many epithelial tissues, including the oral epithelium and the enamel organ. A distinct K14 expression pattern was found in the continuous HERS bi-layer and the epithelial diaphragm were visualized by detecting the β-galactosidase (lacZ) activity in 1 week postnatal mice. The 2 and 4 week old mice showed a fragmented HERS with cell aggregation along the root surface. However, some of the lacZ-positive dissociated cells along the root surface were not positive for pan-cytokeratin. These results suggest that the K14 transgene is a valuable marker of HERS. In addition, the current data suggest that some of the HERS cells may lose their epithelial properties after fragmentation and subsequently undergo EMT.
Teeth develop via a reciprocal induction between the ectomesenchyme originating from the neural crest and the ectodermal epithelium. During complete formation of the tooth morphology and structure, many cells proliferate, differentiate, and can be replaced with other structures. Apoptosis is a type of genetically-controlled cell death and a biological process arising at the cellular level during development. To determine if apoptosis is an effective mechanism for eliminating cells during tooth development, this process was examined in the rat mandible including the developing molar teeth using the transferase-mediated dUTP-biotin nick labeling (TUNEL) method. The tooth germ of the mandibular first molar in the postnatal rat showed a variety of morphological appearances from the bell stage to the crown stage. Strong TUNEL-positive reactivity was observed in the ameloblasts and cells of the stellate reticulum. Odontoblasts near the prospective cusp area also showed a TUNEL positive reaction and several cells in the dental papilla, which are the forming pulp, were also stained intensively in this assay. Our results thus show that apoptosis may take place not only in epithelial-derived dental organs but also in the mesenchyme-derived dental papilla. Hence, apoptosis may be an essential biological process in tooth development.