본 연구는 수중 비소제거를 위해 망간-철 산화물을 합성하고, PVdF와 복합화하여 전기방사법으로 제조하였다. TEM에서 산화물은 철이 망간을 감싼 형태이다. 인장강도는 PMF10이 PVdF보 다 2배 증가하였고 기공크기는 PVdF보다 작아지는 것이 확인되었다. 비소제거 실험에서 산화물은 As(Ⅲ)제거율이 80%이상 나왔고, As(V)도 제거되 었다. As(Ⅲ) 제거율은 PMF01이 30%로 상대적으로 우수한 결과를 보였다. 따라 서 이산화물은 나노섬유와 복합화를 통해 수처리 필터소재에 대한 기초연구에 활용될 것으로 기대된다.
본 연구에서는, 산화그래핀과 은나노물질의 복합체인 Ag/GO를 합성하고 이를 PAN 고분자용액에 도입하여 전기방사함으로써 나노섬유형태의 분리막을 제조하였다. Ultraviolet-visible spectra분석을 통해 합성조건을 최적화하였으며, SEM, TEM, Raman 분석을 진행하여 구조 및 형태를 확인하였다. 그램음성균 (Salmonella, E. coli.)과 그램양성균(B. cereus, St. aureus)에 대한 항균성 실험결과 제조된 복합나노섬유의 항균효과를 확인할 수 있었다. 또한, 복합체의 도입 에 따라 약 100%이상의 높은 수투과도 값과 막오염 저감효과를 확인할 수 있었다. 따라서 본 연구에서 제조된 나노섬유 분리막은 수처리용 분리막으로 충분히 활용할 수 있을 것으로 판단된다.
본 연구에서는 비소(arsenic, As) 제거 특성을 가진 망간-철 산화물(manganese-iron oxide, MF)을 제조하고, 이를 poly vinylidene fluoride (PVdF)와 복합화를 진행하여 As(III)와 As(V)를 동시에 제거가 가능한 수처리용 나노섬유복합막 (polymer nanofiber membrane with Mn-Fe, PMF) 제조에 관한 기초 연구를 진행하였다. Transmission electron microscope (TEM) 분석을 통해 MF 소재의 형상 및 구조를 확인하였으며, PMF 복합막의 수처리용 분리막으로의 활용가능성을 조사하 기 위하여 기계적 강도, 기공크기, 접촉각 및 수투과도 분석을 진행하였다. 측정결과로부터 망간과 철 비율이 같은 PMF11 복 합막의 기계적 강도가 가장 높은 결과값(232.7 kgf/cm2)을 나타낸 것을 확인할 수 있었다. 또한, MF 소재의 도입에 따라 기공 크기가 점차 줄어드는 경향성을 확인할 수 있었으며, 특히, 철 산화물의 조성비가 증가할수록 기공크기가 감소하는 경향성을 보여주었다. 수투과도 측정결과 MF 소재의 도입에 따라 PVdF 나노섬유막에 비해 약 10~60% 이상 향상되는 결과를 나타내 었다. 제조된 MF 소재 및 PMF 복합막의 비소 제거 특성평가를 통해 As(III)와 (V)의 동시 제거 가능하며, 특히, MF01 샘플 의 경우 As(III)와 (V)에 각각 93, 68%의 가장 높은 흡착제거율을 나타내었다. 따라서 본 연구에서는 제조된 MF소재 및 PMF 복합막을 통해 수처리용 분리막의 기능성 향상을 위한 기초연구 자료로 활용할 수 있을 것으로 기대된다.