The A-X (0-0) band of CS, which appears in high dispersion IUE spectra of comets Halley (1982i) and Wilson (19861), has been investigated in detail. We developed models, which include fluorescence and collisional processes We found that in order to account for the observed emission band precisely, IUE tracking errors should be included in line shape calculations it has been found that rotational excitation by electrons is a dominant process in determining populations of rotational ground states. We derived an electron density of 2.0×104/cm3 2.0×104/cm3 at several thousand kilometers from the comet Wilson's nucleus by examining collisional influence on the CS band structure. We presented a band model for the 0-0 band of C34S C34S and discussed the detectability of 34S 34S spectroscopically.
Spectroscopic data between 7 and 15 microns obtained in 1979 by Voyager 1 and 2 Infrared Interferometer Spectrometer (IRIS) have been revisited. Using the spectral data, Jupit.er images have been constructed at the emission bands of hydrocarbons, such as methane, ethane, and acetylene. The resultant. images show differences in emission intensities in the polar regions, suggesting inhomogeneous distributions of the hydrocarbons over the auroral regions of Jupiter.
The vertical distribution of HCN, $HC_3N$ and $C_2N_2$ have been determined from a sequence of Voyager 1 IRIS limb tangent measurements over Titan's north polar region. This sequence yields gas distributions with ${\sim}200\;km$ altitude resolution over the 50-400 km range. The derived mixing ratios of HCN, $HC_3N$ and $C_2N_2$ are $5{\times}10^{-7}$, $7{\times}10^{-8}$ and $8{\times}10^{-9}$, respectively, at 120 km with a factor of 3 uncertainty.
We have constructed a line-by-line model of the A-X system of CO in order to analyze the CO bands appearing in the UV spectra of comets. The model includes electronic, rotational, vibrational transitions, excitations by solar UV radiation, and effects of neutral and electron collisions. The major bands of the A-X system occur in the 1200 - 1800 Å range where the temporal variation of solar irradiation is significant. The solar spectrum in this spectral range shows many emission lines, which cause a significant Swings effect. We derived fluorescence efficiencies of the bands as functions of heliocentric velocity and cometocentric distance using a high resolution spectrum of the sun. We compared our model with a spectrum of comet P/Halley obtained with the IUE, and estimated that the UV Swings effects are less than 20 fluorescence efficiencies for the most bands of the A-X system. We discuss the temporal variation of solar UV irradiation and its effects on the fluorescence efficiencies. The study of the A-X system also requites knowledge of vibrational and rotational fluorescent processes in the infrared and radio regions because the majority of CO molecules in the coma is in the ground rotational states. The solar infrared spectrum near 5 microns, where the fundamental band of CO occurs, contains strong absorption lines of the fundamental band and hot bands of CO and its isotopes. We derived fluorescence efficiencies of the infrared band as functions of heliocentric velocity and cometrocentric distance. The solar absorption lines near 5 microns cause a 20 reduction of the g-factor of the fundamental band at heliocentric velocities close to 0 km/sec. We discuss the effects of neutral and electron collisions on the fluorescence efficiencies of the infrared and UV bands.