Magnetic nanoparticles in nanofluid have a unique ability in that they can be influenced by an external magnetic field, making them a promising heat-exchanging fluid to meet the demands of highly efficient thermal systems. The parametric impact of the magnetic field (static and time-varying) on the heat exchanging rate of Fe3O4 nanoparticles and water-based ferrofluid was investigated in this study. The experimental setup for generating a variable frequency magnetic field and analyzing the thermal behavior of ferrofluid is presented. Temperature data was obtained as heat is transferred from heated water to the ferrofluid used as a coolant. An enhancement of the heat transfer of the magnetic nanofluid was observed when varying the magnetic field frequency, through experimental analysis. The concentration of Fe3O4 nanoparticles in the ferrofluid was varied (0.5 wt%, 1 wt%)to study the impact of nanoparticle loading on heat transfer. An alternative approach for controlling the heat exchange rate in thermal systems is proposed, utilizing the magnetic tunability of the ferrofluid.