검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Municipal landfill leachate (MLL) contamination in surface water is a critical global issue due to the high concentration of toxic organics and recalcitrants. The biological treatment of MLL is ineffective due to an elevated concentration of ammoniacal nitrogen, which restricts the production of the recalcitrant degrading laccase enzyme. In this context, integrating an external laccase-anchored carbon catalyst (LACC) matrix system with the microbial system could be an efficient strategy to overcome the drawbacks of conventional biological MLL treatment technologies. In the present study, the LACC matrix was synthesized by utilizing nanoporous activated carbon (NAC) functionalized ethylene diamine (EDA) and glutaraldehyde (GA) (GA/EDA/NAC) matrix for the anchoring of laccase. The maximum anchoring capacity of laccase onto GA/EDA/ NAC was achieved to be 139.65 U/g GA/EDA/NAC at the optimized anchoring time, 60 min; pH, 5; temperature, 30 °C, and mass of GA/EDA/NAC, 300 mg and was confirmed by Fourier transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM), and X-ray Diffraction (XRD) analyses. Further, the mechanistic study revealed the involvement of covalent bonding in the anchoring of laccase onto the functionalized surface of the GA/EDA/NAC matrix. The adsorption isotherm and kinetics of laccase anchoring onto the GA/EDA/NAC matrix were performed to evaluate its field-level application. Subsequently, the sequential microbial system (I-stage bacterial treatment followed by II-stage fungal treatment) and III-stage LACC matrix system could effectively reduce the COD by 94.2% and phenol by 92.36%. Furthermore, the Gas Chromatography-Mass Spectrophotometry (GC–MS) and FT-IR analyses confirmed the effective degradation of organic compounds and recalcitrants by the integrated microbial and LACC matrix system. The study suggested that the application of the LACC matrix system has resulted in the complete treatment of real-time MLL by overcoming the negative interference of elevated ammoniacal nitrogen concentration. Thus, the integrated microbial and LACC matrix approach could be considered to effectively treat the MLL without any secondary pollution generation.
        5,200원