폭풍해일 및 너울과 같은 고파랑으로 인해 발생되는 월파는 심각한 연안 침수 위험을 초래하며, 연안 시설과 주민의 안전을 위해 정확한 예측이 필요하다. 본 연구는 수치적, 경험적, 신경망, 그레디언트 부스팅(gradient boosting) 및 컴퓨터 비전 기반 모델들을 사용 하여 해안선 인근의 파고와 월파량을 포함한 월파 특성을 조사하였다. 동해안을 대상으로 한국 기상청(KMA), 일본 기상청(JMA), 미국 국 립환경예측센터(NCEP), 유럽 중기기상예보센터(ECMWF)의 기상데이터를 사용하여 ADCIRC 모델과 SWAN 모델을 결합하여 파고를 계산 하였다. 월파 감지용 CCTV가 설치된 동해안의 삼척항을 대상지역으로 선정하였다. CCTV에서 촬영된 영상들을 YOLO를 사용하여 분석하 였으며, 화면 내의 처오름 현상을 감지하였다. 수치모형의 성능은 예측된 파도 특성과 관측값을 비교하여 정성적, 정량적 측정을 통해 평 가하였다. 수치모형의 성능은 파고 예측에서 우수한 것으로 분석되었으며, 태풍과 비태풍 조건에서 파고는 각각 0.60m와 0.44m의 최소 RMSE이고 주기는 각각 1.68m와 1.84m의 RMSE로 분석되었다. 본 연구결과에 의하면 실시간 모니터링은 월파 특성에 대한 신뢰할 수 있는 예측 가능성을 가진다. 실시간 모니터링은 해안지역 보호를 위한 신속한 위험 평가 및 실시간 경보 제공에 활용될 수 있다.
A numerical approximation for modeling morphological behavior in open channels is presented in this paper. The scheme is based on Godunov-type finite volume method which is preferred for its conservation preserving ability. The Saint Venant equations for river flow coupled with sediment continuity form the governing system of equations. Flux computation through cell interfaces is computed by Harten-Lax-van Leer-Contact (HLLC) approximate Riemann solver method at each time step. Second-order temporal and spatial accuracy is confirmed by employing Henn’s method and high-order reconstruction technique with limited gradient, respectively. The coupled model is able to handle discontinuities in surface water flow and bed profiles, and prevent spurious oscillations in all cases. A hydrostatic reconstruction technique is used to handle wet-dry fronts and avoid negative water depths and unphysical high velocities in complex domains. A modification in surface gradient method satisfies the well-balancing between flux computations of momentum and slope-source terms. Comparison of model-results for various tests with their analytical and experimental solutions shows that our numerical scheme is robust in simulating steady and unsteady flows over a various domains.